我需要dplyr的一些帮助。
我有两个数据框 - 一个是巨大的,有几个时间序列A,B,...
在那里(LargeDF
),第二个(Categories
)有时间间隔(左边界和右边界)。 / p>
我想在标有LargeDF
的{{1}}中添加另一列,其中包含适当的边界值,如下所示:
leftBoundary
和
LargeDF
ts timestamp signal # left_boundary
1 A 0.3209338 10.43279 # 0
2 A 1.4791524 10.34295 # 1
3 A 2.6007494 10.71601 # 2
我提出的代码是
Categories
ts left right
1 A 0 1
2 A 1 2
3 A 2 3
但是对于大型时间系列来说它超级慢。我真的想丢失LargeDF %>%
group_by(ts) %>%
do(myFUN(., Categories))
# calls this ...
myFUN <- function(Large, Categ) {
CategTS <- Categ %>%
filter(ts == Large[1, "ts"][[1]])
Large %>%
group_by(timestamp) %>% # this is bothering me...
mutate(left_boundary = CategTS$left[CategTS$left < timestamp
& timestamp < CategTS$right])
}
,因为它们在每个group_by(timestamp)
内都是唯一的。
有人看到更好的解决方案吗?非常感谢。
ts
更新(data.table和我稍加修改的模型)
所以,我首先尝试了@DavidArenburg对快速/脏模型示例的建议,但是遇到了一些时间戳被分箱两次(连续类别/间隔)的问题。
# Code for making the example data frames ...
library("dplyr")
n <- 10; series <- c("A", "B", "C")
LargeDF <- data.frame(
ts = rep(series, each = n)
, timestamp = runif(n*length(series), max = 4)
, signal = runif(n*length(series), min = 10, max = 11)
) %>% group_by(ts) %>% arrange(timestamp)
m <- 7
Categories <- data.frame(
ts = rep(series, each = m)
, left = rep(seq(1 : m) - 1, length(series))
, right = rep(seq(1 : m), length(series))
)
然后,我将> foverlaps(d, c, type="any", by.x = c("timestamp", "timestamp2"))
left right value timestamp timestamp2
1: 0.9 1.9 0.1885459 1 1
2: 0.9 1.9 0.0542375 2 2 # binned here
3: 1.9 2.9 0.0542375 2 2 # and here as well
13: 19.9 25.9 0.4579986 20 20
视为默认值,并意识到正常时间戳为minoverlap = 1L
。
>> 1
因此,如果我将所有内容都移到更大的值(例如下面示例中的> as.numeric(Sys.time())
[1] 1429022267
),那么一切都很顺利。
n <- 10
凭借我的真实数据,一切进展顺利,再次感谢。
left right value timestamp timestamp2
1: 9 19 0.64971126 10 10
2: 19 29 0.75994751 20 20
3: 29 99 0.98276462 30 30
9: 199 259 0.89816165 200 200
更新2(加入,再过滤,在dplyr中)
我测试了来自@aosmith的建议,使用dplyr函数## Code for my data.table example -----
n <- 1
d <- data.table( value = runif(9),
timestamp = c(1, 2, 3, 5, 7, 10, 15, 18, 20)*n,
timestamp2 = c(1, 2, 3, 5, 7, 10, 15, 18, 20)*n)
c <- data.table(left = c(0.9, 1.9, 2.9, 9.9, 19.9, 25.9)*n,
right = c(1.9, 2.9, 9.9, 19.9, 25.9, 33.9)*n)
setkey(c, left, right)
foverlaps(d, c, type="any", by.x = c("timestamp", "timestamp2"))
创建一个(非常)大DF,然后再次left_join()
。很快,我遇到了内存问题:
filter()
对于较小的表,这种方法可能是一个好主意 - 因为语法非常好(但这又是个人偏好)。在这种情况下,我会选择Error: std::bad_alloc
解决方案。再次感谢所有建议。
答案 0 :(得分:5)
dplyr
不适合此类操作,请尝试使用data.table
s foverlaps
函数
library(data.table)
class(LargeDF) <- "data.frame" ## Removing all the dplyr classes
setDT(LargeDF)[, `:=`(left = timestamp, right = timestamp)] # creating min and max boundaries in the large table
setkey(setDT(Categories)) # keying by all columns (necessary for `foverlaps` to work)
LargeDF[, left_boundary := foverlaps(LargeDF, Categories)$left][] # Creating left_boundary
# ts timestamp signal left right left_boundary
# 1: A 0.46771516 10.72175 0.46771516 0.46771516 0
# 2: A 0.58841492 10.35459 0.58841492 0.58841492 0
# 3: A 1.14494484 10.50301 1.14494484 1.14494484 1
# 4: A 1.18298225 10.82431 1.18298225 1.18298225 1
# 5: A 1.69822678 10.04780 1.69822678 1.69822678 1
# 6: A 1.83189609 10.75001 1.83189609 1.83189609 1
# 7: A 1.90947475 10.94715 1.90947475 1.90947475 1
# 8: A 2.73305266 10.14449 2.73305266 2.73305266 2
# 9: A 3.02371968 10.17724 3.02371968 3.02371968 3
# ...