所以我试图在Play / Scala项目中使用Spark从MySQL数据库中获取数据。由于我尝试接收的行数量巨大,我的目标是从spark rdd获取Iterator。这是Spark上下文和配置......
private val configuration = new SparkConf()
.setAppName("Reporting")
.setMaster("local[*]")
.set("spark.executor.memory", "2g")
.set("spark.akka.timeout", "5")
.set("spark.driver.allowMultipleContexts", "true")
val sparkContext = new SparkContext(configuration)
JDBCRDD与sql查询一起如下
val query =
"""
|SELECT id, date
|FROM itembid
|WHERE date BETWEEN ? AND ?
""".stripMargin
val rdd = new JdbcRDD[ItemLeadReportOutput](SparkProcessor.sparkContext,
driverFactory,
query,
rangeMinValue.get,
rangeMaxValue.get,
partitionCount,
rowMapper)
.persist(StorageLevel.MEMORY_AND_DISK)
数据太多,无法立刻获得。在较小的数据集开始时,可以从rdd.toLocalIterator获取迭代器。但是在这种特定情况下,它无法计算迭代器。所以我的目标是逐个部署多个分区和接收数据。我一直在收到错误。这样做的正确方法是什么?
答案 0 :(得分:1)
我相信你正面临读取MySQL表的堆问题。
我要做的是将数据从MySQL提取到存储系统(HDFS,本地)文件中,然后我将使用spark的上下文textFile来获取它!
示例:
object JDBCExample {
def main(args: Array[String]) {
val driver = "com.mysql.jdbc.Driver"
val url = "jdbc:mysql://localhost/database"
val username = "user"
val password = "pass"
var connection: Connection = null
try {
Class.forName(driver)
connection = DriverManager.getConnection(url, username, password)
// This is the tricky part of reading a huge MySQL table you'll need to set your sql statement as following :
val statement = connection.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY, java.sql.ResultSet.CONCUR_READ_ONLY)
statement.setMaxRows(0)
statement.setFetchSize(Integer.MIN_VALUE)
val resultSet = statement.executeQuery("select * from ex_table")
val fileWriter = new FileWriter("output.csv")
val writer = new CSVWriter(fileWriter, '\t');
while (resultSet.next()) {
val entries = List(... // process result here //...)
writer.writeNext(entries.toArray)
}
writer.close();
} catch {
case e: Throwable => e.printStackTrace
}
connection.close()
}
}
存储数据后,您可以阅读:
val data = sc.textFile("output.csv")
PS:我在代码中使用了一些快捷方式(每个示例中包含CSVWriter),但您可以将其用作您想要执行的操作的骨架!