CSR矩阵 - 矩阵乘法

时间:2015-04-13 05:18:19

标签: c++ algorithm matrix sparse-matrix matrix-multiplication

我有两个方形矩阵AB

我必须将B转换为CSR Format并确定产品C

A * B_csr = C

我在网上找到了很多关于CSR Matrix - Vector multiplication的信息。算法是:

for (k = 0; k < N; k = k + 1)
  result[i] = 0;

for (i = 0; i < N; i = i + 1)
{  
  for (k = RowPtr[i]; k < RowPtr[i+1]; k = k + 1)
  {  
    result[i] = result[i] + Val[k]*d[Col[k]];
  }  
}

但是,我需要Matrix - Matrix乘法。

此外,似乎大多数算法都应用A_csr - vector乘法,我需要A * B_csr。我的解决方案是在转换之前转置两个矩阵,然后转置最终产品。

有人可以解释如何计算Matrix - CSR Matrix产品和/或CSR Matrix - Matrix产品吗?

1 个答案:

答案 0 :(得分:1)

这是Python中Dense Matrix X CSR Matrix的简单解决方案。它应该是不言自明的。

def main():
  # 4 x 4 csr matrix
  #    [1, 0, 0, 0],
  #    [2, 0, 3, 0],
  #    [0, 0, 0, 0],
  #    [0, 4, 0, 0],
  csr_values = [1, 2, 3, 4]
  col_idx    = [0, 0, 2, 1]
  row_ptr    = [0, 1, 3, 3, 4]
  csr_matrix = [
      csr_values,
      col_idx,
      row_ptr
      ]

  dense_matrix = [
      [1, 3, 3, 4],
      [1, 2, 3, 4],
      [1, 4, 3, 4],
      [1, 2, 3, 5],
      ]

  res = [
      [0, 0, 0, 0],
      [0, 0, 0, 0],
      [0, 0, 0, 0],
      [0, 0, 0, 0],
      ]

  # matrix order, assumes both matrices are square
  n = len(dense_matrix)

  # res = dense X csr
  csr_row = 0 # Current row in CSR matrix
  for i in range(n):
    start, end = row_ptr[i], row_ptr[i + 1]
    for j in range(start, end):
      col, csr_value = col_idx[j], csr_values[j]
      for k in range(n):
        dense_value = dense_matrix[k][csr_row]
        res[k][col] += csr_value * dense_value
    csr_row += 1

  print res


if __name__ == '__main__':
  main()

CSR Matrix X Dense Matrix实际上只是密集矩阵每行的CSR Matrix X Vector产品序列吗?因此,扩展上面显示的代码应该非常容易。

继续前进,我建议你不要自己编写这些例程。如果您使用的是C ++(基于标记),那么您可以查看Boost ublasEigen。 API起初看起来有点神秘,但从长远来看它确实值得。首先,您可以访问更多功能,将来可能需要这些功能。其次,这些实现将得到更好的优化。