我有一个图像数据集,它是arff格式的多波段数据集。 它看起来像这样:
8.3000000e+001 9.3000000e+001 9.6000000e+001 7.5000000e+001 1.0000000e+000
8.3000000e+001 9.3000000e+001 9.6000000e+001 7.5000000e+001 1.0000000e+000
8.3000000e+001 9.3000000e+001 9.6000000e+001 7.5000000e+001 1.0000000e+000
8.3000000e+001 9.3000000e+001 9.6000000e+001 7.5000000e+001 1.0000000e+000
7.4000000e+001 8.4000000e+001 8.6000000e+001 7.1000000e+001 1.0000000e+000
7.4000000e+001 8.4000000e+001 8.6000000e+001 7.1000000e+001 1.0000000e+000
7.4000000e+001 8.4000000e+001 8.6000000e+001 7.1000000e+001 1.0000000e+000
7.4000000e+001 8.4000000e+001 8.6000000e+001 7.1000000e+001 1.0000000e+000
前4个属性指定像素的多波段值,最后一个属性指定类标签。是否可以将其转换为RGB格式?我有java代码根据RGB值对图像进行分类。
答案 0 :(得分:3)
如果我做得对,那么答案是是,但为了澄清这是我的看法:
你有4个波段强度,你需要 RGB 颜色值。最后一个数字与颜色无关,所以请忽略它。
您需要了解的内容
如果强度是线性的,如果是非线性的,如何将其转换为线性标度。您需要知道每个使用频段的波长或 RGB 颜色
如何转换
取每个 RGB 的波段并将其乘以线性强度,然后将它们全部加在一起。
color_rgb = band0_rgb*band0_intensity+...+band3_rgb*band3_intensity
如何从波长
获得可用的波段RGB获取波长为RGB values of visible spectrum的光的颜色并重新调整颜色,因此如果将所有波段添加到相同的强度,则会得到白色。
我使用均匀分布的频段通过可见光谱进行多光谱渲染,这就是我在C ++中的表现方式:
//---------------------------------------------------------------------------
//--- multi band rendering --------------------------------------------------
//---------------------------------------------------------------------------
const int _Bands=10; // number of bands used
double _Band_RGB[_Bands][3]; // RGB of each band with white bias correction
double _Band_Wavelength[_Bands]; // wavelength of each band
//---------------------------------------------------------------------------
void wavelength2RGB(double *rgb,double lambda) // RGB <0,1> <- lambda <400e-9,700e-9> [m]
{
double r=0.0,g=0.0,b=0.0,t;
if ((lambda>=400.0e-9)&&(lambda<410.0e-9)) { t=(lambda-400.0e-9)/(410.0e-9-400.0e-9); r= +(0.33*t)-(0.20*t*t); }
else if ((lambda>=410.0e-9)&&(lambda<475.0e-9)) { t=(lambda-410.0e-9)/(475.0e-9-410.0e-9); r=0.14 -(0.13*t*t); }
else if ((lambda>=545.0e-9)&&(lambda<595.0e-9)) { t=(lambda-545.0e-9)/(595.0e-9-545.0e-9); r= +(1.98*t)-( t*t); }
else if ((lambda>=595.0e-9)&&(lambda<650.0e-9)) { t=(lambda-595.0e-9)/(650.0e-9-595.0e-9); r=0.98+(0.06*t)-(0.40*t*t); }
else if ((lambda>=650.0e-9)&&(lambda<700.0e-9)) { t=(lambda-650.0e-9)/(700.0e-9-650.0e-9); r=0.65-(0.84*t)+(0.20*t*t); }
if ((lambda>=415.0e-9)&&(lambda<475.0e-9)) { t=(lambda-415.0e-9)/(475.0e-9-415.0e-9); g= +(0.80*t*t); }
else if ((lambda>=475.0e-9)&&(lambda<590.0e-9)) { t=(lambda-475.0e-9)/(590.0e-9-475.0e-9); g=0.8 +(0.76*t)-(0.80*t*t); }
else if ((lambda>=585.0e-9)&&(lambda<639.0e-9)) { t=(lambda-585.0e-9)/(639.0e-9-585.0e-9); g=0.84-(0.84*t) ; }
if ((lambda>=400.0e-9)&&(lambda<475.0e-9)) { t=(lambda-400.0e-9)/(475.0e-9-400.0e-9); b= +(2.20*t)-(1.50*t*t); }
else if ((lambda>=475.0e-9)&&(lambda<560.0e-9)) { t=(lambda-475.0e-9)/(560.0e-9-475.0e-9); b=0.7 -( t)+(0.30*t*t); }
rgb[0]=r;
rgb[1]=g;
rgb[2]=b;
}
//---------------------------------------------------------------------------
double wavelength2int(double lambda) // white bias correction intensity <0,1+> <- lambda <400e-9,700e-9> [m]
{ // this is mine empirically deduced equation and works for evenly distributed bands
const double a0= 8.50/double(_swColorWavelengths);// for 3-5 bands low bias, >5 almost no visible bias present
const double a1=-27.37/double(_swColorWavelengths);
const double a2=+26.35/double(_swColorWavelengths);
double t=divide(lambda-400e-9,700e-9-400e-9);
return (a0)+(a1*t)+(a2*t*t);
}
//---------------------------------------------------------------------------
void init_multiband_colors() // init evenly distributed bands through visible spectrum range
{
double l,dl; int ix;
l=405e-9; dl=695e-9; dl=divide(dl-l,_Bands); l+=0.5*dl;
for (ix=_Bands-1;ix>=0;ix--,l+=dl) // init colors and wavelengths (multispectral rendering)
{
_Band_Wavelength[ix]=l;
wavelength2RGB(_Band_RGB[ix],l);
_Band_RGB[ix][0]*=wavelength2int(l); // white bias removal
_Band_RGB[ix][1]*=wavelength2int(l);
_Band_RGB[ix][2]*=wavelength2int(l);
}
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
这就是它的样子:
第一行显示使用过的带的数量和颜色,第二行是使用多光谱渲染的白色渲染图像的一部分。你可以看到一个小的白色偏见。我将该公式设置为与使用(>=3)
的任意数量的波段一样接近白色。这个想法是,如果你有白噪声(所有频率具有相同的强度),那么你得到一个白色。所以当添加所有使用的乐队颜色时,你应该有白色。所以我根据经验尝试通过波长函数来缩放颜色,这就是我想出来的......
如果你的乐队分布不均匀
然后你需要整合它们覆盖的所有均匀分布的波段,例如:
/=100