在numpy / openblas上设置运行时的最大线程数

时间:2015-04-10 10:39:13

标签: python numpy blas openblas

我想知道是否可以在(Python)运行时更改OpenBLAS在numpy后面使用的最大线程数?

我知道可以在通过环境变量OMP_NUM_THREADS运行解释器之前设置它,但我想在运行时更改它。

通常,当使用MKL而不是OpenBLAS时,可能是:

import mkl
mkl.set_num_threads(n)

2 个答案:

答案 0 :(得分:12)

您可以使用openblas_set_num_threads调用ctypes函数来执行此操作。我经常发现自己想要这样做,所以我写了一个上下文管理器:

import contextlib
import ctypes
from ctypes.util import find_library

# Prioritize hand-compiled OpenBLAS library over version in /usr/lib/
# from Ubuntu repos
try_paths = ['/opt/OpenBLAS/lib/libopenblas.so',
             '/lib/libopenblas.so',
             '/usr/lib/libopenblas.so.0',
             find_library('openblas')]
openblas_lib = None
for libpath in try_paths:
    try:
        openblas_lib = ctypes.cdll.LoadLibrary(libpath)
        break
    except OSError:
        continue
if openblas_lib is None:
    raise EnvironmentError('Could not locate an OpenBLAS shared library', 2)


def set_num_threads(n):
    """Set the current number of threads used by the OpenBLAS server."""
    openblas_lib.openblas_set_num_threads(int(n))


# At the time of writing these symbols were very new:
# https://github.com/xianyi/OpenBLAS/commit/65a847c
try:
    openblas_lib.openblas_get_num_threads()
    def get_num_threads():
        """Get the current number of threads used by the OpenBLAS server."""
        return openblas_lib.openblas_get_num_threads()
except AttributeError:
    def get_num_threads():
        """Dummy function (symbol not present in %s), returns -1."""
        return -1
    pass

try:
    openblas_lib.openblas_get_num_procs()
    def get_num_procs():
        """Get the total number of physical processors"""
        return openblas_lib.openblas_get_num_procs()
except AttributeError:
    def get_num_procs():
        """Dummy function (symbol not present), returns -1."""
        return -1
    pass


@contextlib.contextmanager
def num_threads(n):
    """Temporarily changes the number of OpenBLAS threads.

    Example usage:

        print("Before: {}".format(get_num_threads()))
        with num_threads(n):
            print("In thread context: {}".format(get_num_threads()))
        print("After: {}".format(get_num_threads()))
    """
    old_n = get_num_threads()
    set_num_threads(n)
    try:
        yield
    finally:
        set_num_threads(old_n)

你可以像这样使用它:

with num_threads(8):
    np.dot(x, y)

正如评论中所提到的,openblas_get_num_threadsopenblas_get_num_procs在撰写本文时是非常新的功能,因此除非您从最新版本的源代码编译OpenBLAS,否则可能无法使用。< / p>

答案 1 :(得分:3)

我们最近开发了threadpoolctl,这是一个跨平台软件包,用于控制在python中调用C级线程池时使用的线程数。它的工作原理与@ali_m的答案类似,但是会自动检测需要循环访问所有已加载库的库。它还带有自省API。

可以使用pip install threadpoolctl安装此软件包,并附带一个上下文管理器,该管理器使您可以控制诸如numpy之类的软件包使用的线程数:

from threadpoolctl import threadpool_limits
import numpy as np


with threadpool_limits(limits=1, user_api='blas'):
    # In this block, calls to blas implementation (like openblas or MKL)
    # will be limited to use only one thread. They can thus be used jointly
    # with thread-parallelism.
    a = np.random.randn(1000, 1000)
    a_squared = a @ a

您还可以更好地控制不同的线程池(例如将blasopenmp调用区分开)。

注意:该软件包仍在开发中,欢迎任何反馈。