我想从我的专栏"推文"中删除停用词。如何迭代每一行和每一项?
pos_tweets = [('I love this car', 'positive'),
('This view is amazing', 'positive'),
('I feel great this morning', 'positive'),
('I am so excited about the concert', 'positive'),
('He is my best friend', 'positive')]
test = pd.DataFrame(pos_tweets)
test.columns = ["tweet","class"]
test["tweet"] = test["tweet"].str.lower().str.split()
from nltk.corpus import stopwords
stop = stopwords.words('english')
答案 0 :(得分:23)
我们可以从stopwords
导入nltk.corpus
,如下所示。有了它,我们用Python的列表理解和pandas.DataFrame.apply
排除了停用词。
# Import stopwords with nltk.
from nltk.corpus import stopwords
stop = stopwords.words('english')
pos_tweets = [('I love this car', 'positive'),
('This view is amazing', 'positive'),
('I feel great this morning', 'positive'),
('I am so excited about the concert', 'positive'),
('He is my best friend', 'positive')]
test = pd.DataFrame(pos_tweets)
test.columns = ["tweet","class"]
# Exclude stopwords with Python's list comprehension and pandas.DataFrame.apply.
test['tweet_without_stopwords'] = test['tweet'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))
print(test)
# Out[40]:
# tweet class tweet_without_stopwords
# 0 I love this car positive I love car
# 1 This view is amazing positive This view amazing
# 2 I feel great this morning positive I feel great morning
# 3 I am so excited about the concert positive I excited concert
# 4 He is my best friend positive He best friend
也可以使用pandas.Series.str.replace
排除它。
pat = r'\b(?:{})\b'.format('|'.join(stop))
test['tweet_without_stopwords'] = test['tweet'].str.replace(pat, '')
test['tweet_without_stopwords'] = test['tweet_without_stopwords'].str.replace(r'\s+', ' ')
# Same results.
# 0 I love car
# 1 This view amazing
# 2 I feel great morning
# 3 I excited concert
# 4 He best friend
如果您无法导入停用词,可以按如下方式下载。
import nltk
nltk.download('stopwords')
另一种回答方法是从text.ENGLISH_STOP_WORDS
导入sklearn.feature_extraction
。
# Import stopwords with scikit-learn
from sklearn.feature_extraction import text
stop = text.ENGLISH_STOP_WORDS
请注意,scikit-learn停用词和nltk停用词中的单词数量不同。
答案 1 :(得分:22)
使用列表理解
test['tweet'].apply(lambda x: [item for item in x if item not in stop])
返回:
0 [love, car]
1 [view, amazing]
2 [feel, great, morning]
3 [excited, concert]
4 [best, friend]
答案 2 :(得分:4)
查看pd.DataFrame.replace(),它可能适合您:
In [42]: test.replace(to_replace='I', value="",regex=True)
Out[42]:
tweet class
0 love this car positive
1 This view is amazing positive
2 feel great this morning positive
3 am so excited about the concert positive
4 He is my best friend positive
编辑:replace()
将搜索字符串(甚至是子字符串)。对于例如如果rk
是有时不期望的停用词,它会从work
替换rk
。
因此在这里使用regex
:
for i in stop :
test = test.replace(to_replace=r'\b%s\b'%i, value="",regex=True)
答案 3 :(得分:2)
如果您想简单但又不想找回单词列表:
test["tweet"].apply(lambda words: ' '.join(word.lower() for word in words.split() if word not in stop))
将停止定义为OP。
from nltk.corpus import stopwords
stop = stopwords.words('english')