我有一个数据集如下(在Python中):
import numpy as np
A = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0, 0.1, 0.2, 0.3, 0.4, 0.2, 0.2, 0.05, 0.1])
B = np.array([0.9, 0.7, 0.5, 0.3, 0.1, 0.2, 0.1, 0.15, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
C = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.2, 0.2, 0.05, 0.1, 0.9, 0.7, 0.5, 0.3, 0.1, 0.2, 0.1, 0.15, 0])
D = np.array([1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2])
我正在尝试使用matplotlib创建三元图,如图(source)所示。轴是A,B,C和D值应用轮廓表示,点需要标记,如图所示。
可以在matplotlib或Python中创建这样的图吗?
答案 0 :(得分:6)
是的,他们可以;至少有几个软件包需要帮助。
我曾试图在博客文章 Ternary diagrams 中收集它们。一定要查看各种链接和评论。
这些似乎是Python的最佳选择:
python-ternary
另一个SO问题中还有一些建议: Library/tool for drawing ternary/triangle plots [closed] 。
答案 1 :(得分:5)
你可以尝试这样的事情:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
# first load some data: format x1,x2,x3,value
test_data = np.array([[0,0,1,0],
[0,1,0,0],
[1,0,0,0],
[0.25,0.25,0.5,1],
[0.25,0.5,0.25,1],
[0.5,0.25,0.25,1]])
# barycentric coords: (a,b,c)
a=test_data[:,0]
b=test_data[:,1]
c=test_data[:,2]
# values is stored in the last column
v = test_data[:,-1]
# translate the data to cartesian corrds
x = 0.5 * ( 2.*b+c ) / ( a+b+c )
y = 0.5*np.sqrt(3) * c / (a+b+c)
# create a triangulation out of these points
T = tri.Triangulation(x,y)
# plot the contour
plt.tricontourf(x,y,T.triangles,v)
# create the grid
corners = np.array([[0, 0], [1, 0], [0.5, np.sqrt(3)*0.5]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])
# creating the grid
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=4)
#plotting the mesh
plt.triplot(trimesh,'k--')
plt.show()
请注意,您可以通过执行以下操作删除x,y轴:
plt.axis('off')
然而,对于三角轴+标签和刻度,我还不知道,但如果有人有解决方案,我会接受它;)
最佳,
于连
答案 2 :(得分:0)
from matplotlib.tri import Triangulation, TriAnalyzer, UniformTriRefiner
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
from lineticks import LineTicks
#-----------------------------------------------------------------------------
# Analytical test function
#-----------------------------------------------------------------------------
def experiment_res(x, y):
""" An analytic function representing experiment results """
x = 2.*x
r1 = np.sqrt((0.5 - x)**2 + (0.5 - y)**2)
theta1 = np.arctan2(0.5 - x, 0.5 - y)
r2 = np.sqrt((-x - 0.2)**2 + (-y - 0.2)**2)
theta2 = np.arctan2(-x - 0.2, -y - 0.2)
z = (4*(np.exp((r1/10)**2) - 1)*30. * np.cos(3*theta1) +
(np.exp((r2/10)**2) - 1)*30. * np.cos(5*theta2) +
2*(x**2 + y**2))
return (np.max(z) - z)/(np.max(z) - np.min(z))
#-----------------------------------------------------------------------------
# Generating the initial data test points and triangulation for the demo
#-----------------------------------------------------------------------------
# User parameters for data test points
n_test = 200 # Number of test data points, tested from 3 to 5000 for subdiv=3
subdiv = 3 # Number of recursive subdivisions of the initial mesh for smooth
# plots. Values >3 might result in a very high number of triangles
# for the refine mesh: new triangles numbering = (4**subdiv)*ntri
init_mask_frac = 0.0 # Float > 0. adjusting the proportion of
# (invalid) initial triangles which will be masked
# out. Enter 0 for no mask.
min_circle_ratio = .01 # Minimum circle ratio - border triangles with circle
# ratio below this will be masked if they touch a
# border. Suggested value 0.01 ; Use -1 to keep
# all triangles.
# Random points
random_gen = np.random.mtrand.RandomState(seed=1000)
#x_test = random_gen.uniform(-1., 1., size=n_test)
x_test=np.array([0, 0.25, 0.5, 0.75, 1, 0.125, 0.375, 0.625, 0.875, 0.25, 0.5, 0.75, 0.375, 0.625, 0.5])
y_test=np.array([0, 0, 0, 0, 0, 0.216506406, 0.216506406, 0.216506406, 0.216506406, 0.433012812, 0.433012812,0.433012812, 0.649519219, 0.649519219, 0.866025625
])
#y_test = random_gen.uniform(-1., 1., size=n_test)
z_test = experiment_res(x_test, y_test)
# meshing with Delaunay triangulation
tri = Triangulation(x_test, y_test)
ntri = tri.triangles.shape[0]
# Some invalid data are masked out
mask_init = np.zeros(ntri, dtype=np.bool)
masked_tri = random_gen.randint(0, ntri, int(ntri*init_mask_frac))
mask_init[masked_tri] = True
tri.set_mask(mask_init)
#-----------------------------------------------------------------------------
# Improving the triangulation before high-res plots: removing flat triangles
#-----------------------------------------------------------------------------
# masking badly shaped triangles at the border of the triangular mesh.
mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
tri.set_mask(mask)
# refining the data
refiner = UniformTriRefiner(tri)
tri_refi, z_test_refi = refiner.refine_field(z_test, subdiv=subdiv)
# analytical 'results' for comparison
z_expected = experiment_res(tri_refi.x, tri_refi.y)
# for the demo: loading the 'flat' triangles for plot
flat_tri = Triangulation(x_test, y_test)
flat_tri.set_mask(~mask)
#-----------------------------------------------------------------------------
# Now the plots
#-----------------------------------------------------------------------------
# User options for plots
plot_tri = True # plot of base triangulation
plot_masked_tri = True # plot of excessively flat excluded triangles
plot_refi_tri = False # plot of refined triangulation
plot_expected = False # plot of analytical function values for comparison
# Graphical options for tricontouring
levels = np.arange(0., 1., 0.025)
#cmap = cm.get_cmap(name='Blues', lut=None)
cmap = cm.get_cmap(name='terrain', lut=None)
f=-0.2
e=-0.2
##############################################################################
##############################################################################
t = np.linspace(0, 1, 100)
xx = t/2
yy = t*0.8660254037
plt.subplots(facecolor='w')
ax = plt.axes([-0.2, -0.2, 1.2, 1.2])
traj, = ax.plot(xx, yy, c='red', lw=4)
ax.plot(e, f)
ax.set_xlim(-0.5,1.2)
ax.set_ylim(-0.5,1.2)
# Add major ticks every 10th time point and minor ticks every 4th;
# label the major ticks with the corresponding time in secs.
major_ticks = LineTicks(traj, range(0, n, 10), 10, lw=2,
label=['{:.2f}'.format(tt) for tt in t[::10]])
minor_ticks = LineTicks(traj, range(0,n), 4, lw=1)
xg=xx+0.5
yg=np.fliplr([yy])[0]
ax1 = plt.axes([-0.2, -0.2, 1.2, 1.2])
traj1, = ax1.plot(xg, yg, c='Blue', lw=4)
major_ticks1 = LineTicks(traj1, range(0, n, 10), 10, lw=2,
label=['{:.2f}'.format(tt) for tt in t[::10]])
minor_ticks1 = LineTicks(traj1, range(0,n), 4, lw=1)
#ax.set_xlim(-0.2,t[-1]+0.2)
ax1.plot(e, f)
ax1.set_xlim(-0.5,1.2)
ax1.set_ylim(-0.5,1.2)
xgg=1-t
ygg=yy*0
ax3 = plt.axes([-0.2, -0.2, 1.2, 1.2])
traj2, = ax3.plot(xgg, ygg, c='green', lw=4)
major_ticks2 = LineTicks(traj2, range(0, n, 10), 10, lw=2,
label=['{:.2f}'.format(tt) for tt in t[::10]])
minor_ticks2 = LineTicks(traj2, range(0,n), 4, lw=1)
#ax.set_xlim(-0.2,t[-1]+0.2)
ax1.plot(e, f)
ax1.set_xlim(-0.5,1.2)
ax1.set_ylim(-0.5,1.2)
##############################################################################
##############################################################################
ax4 = plt.axes([-0.2, -0.2, 1.2, 1.2])
#plt.figure()
#plt.gca().set_aspect('equal')
plt.title("Filtering a Delaunay mesh\n" +
"(application to high-resolution tricontouring)")
# 1) plot of the refined (computed) data contours:
ax4.axes.tricontour(tri_refi, z_test_refi, levels=levels,
colors=['0.25', '0.5', '0.5', '0.5', '0.5'],
linewidths=[1.0, 0.5, 0.5, 0.5, 0.5])
ax4.axes.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap)
ax4.plot(e, f)
#ax4.set_xlim(-0.2,1.2)
#ax4.set_ylim(-0.2,1.2)
# 2) plot of the expected (analytical) data contours (dashed):
if plot_expected:
plt.tricontour(tri_refi, z_expected, levels=levels, cmap=cmap,
linestyles='--')
# 3) plot of the fine mesh on which interpolation was done:
if plot_refi_tri:
plt.triplot(tri_refi, color='0.97')
# 4) plot of the initial 'coarse' mesh:
if plot_tri:
plt.triplot(tri, color='0.7')
# 4) plot of the unvalidated triangles from naive Delaunay Triangulation:
if plot_masked_tri:
plt.triplot(flat_tri, color='red')
##################################################################
###################################################################
ax4.annotate('Oil', xy=(0.0, -0.15), xytext=(1, -0.15),
arrowprops=dict(facecolor='green', shrink=0.05),
)
plt.show()
enter code here
答案 3 :(得分:0)
只需添加另一个选项即可(尽管可能对帮助OP来得太迟了,但也许有人帮助了)。您可以使用pip install samternary
点安装。 github链接为https://github.com/samueljmcameron/samternary。
对于原始帖子,您可以相当接近源代码中的示例examples/flatdata.py
,即
import matplotlib.pyplot as plt
import numpy as np
from samternary.ternary import Ternary
# OP's data
A = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0,
0.1, 0.2, 0.3, 0.4, 0.2, 0.2, 0.05, 0.1])
B = np.array([0.9, 0.7, 0.5, 0.3, 0.1, 0.2, 0.1, 0.15, 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
C = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.2, 0.2, 0.05, 0.1, 0.9,
0.7, 0.5, 0.3, 0.1, 0.2, 0.1, 0.15, 0])
D = np.array([1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0,
1, 2])
# note that the array C above is not necessary since A+B+C=1
# plot the data in two ways, in cartesian coordinates (ax_norm)
# and in ternary-plot coordinates (ax_trans)
# create the figure and the two sets of axes
fig, (ax_norm,ax_trans) = plt.subplots(1,2,
figsize=[5,2.8])
# plot data in normal way first using tricontourf
ax_norm.tricontourf(A,B,D)
ax_norm.set_xlabel(r'$\phi_1$')
ax_norm.set_ylabel(r'$\phi_2$')
# transform ax_trans to ternary-plot style, which includes
# building axes and labeling the axes
cob = Ternary(ax_trans, bottom_ax = 'bottom', left_ax = 'left',
right_ax = 'right',labelpad=20)
# use change of bases method within Ternary() to
points = cob.B1_to_B2(A,B)
# affine transform x,y points to ternary-plot basis
cs = ax_trans.tricontourf(points[0],points[1],D)
ax_norm.set_title("Cartesian "
"(basis " + r"$\mathcal{B}_1$" + ")")
ax_trans.set_title("flattened-grid "
"(basis " + r"$\mathcal{B}_2$" + ")")
cbar = fig.colorbar(cs,ax=ax_trans,shrink=0.6)
fig.subplots_adjust(bottom=0.2,hspace=0.01)
plt.show()
结果是(空格是由于OP中数据的稀疏性造成的):
答案 4 :(得分:0)
我认为 2021 年最强大的软件包是 Plottly,它具有 contour ternary plots 和 scatter ternary plots。