是否可以执行独立的地图缩减作业(不在链接减速器输出的位置
答案 0 :(得分:1)
在你的驱动程序代码中调用两个方法runfirstjob,runsecondjob.just就像这样。这只是一个提示,根据你的需要做修改
public class ExerciseDriver {
static Configuration conf;
public static void main(String[] args) throws Exception {
ExerciseDriver ED = new ExerciseDriver();
conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
if(args.length < 4) {
System.out.println("Too few arguments. Arguments should be: <hdfs input folder> <hdfs output folder> <N configurable Integer Value>");
System.exit(0);
}
String pathin1stmr = args[0];
String pathout1stmr = args[1];
String pathin2ndmr = args[2];
String pathout2ndmr = args[3];
ED.runFirstJob(pathin1stmr, pathout1stmr);
ED.runSecondJob(pathin2ndmr, pathout2ndmr);
}
public int runFirstJob(String pathin, String pathout)
throws Exception {
Job job = new Job(conf);
job.setJarByClass(ExerciseDriver.class);
job.setMapperClass(ExerciseMapper1.class);
job.setCombinerClass(ExerciseCombiner.class);
job.setReducerClass(ExerciseReducer1.class);
job.setInputFormatClass(ParagrapghInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(pathin));
FileOutputFormat.setOutputPath(job, new Path(pathout));
job.submit();
job.getMaxMapAttempts();
/*
JobContextImpl jc = new JobContextImpl();
TaskReport[] maps = jobclient.getMapTaskReports(job.getJobID());
*/
boolean success = job.waitForCompletion(true);
return success ? 0 : -1;
}
public int runSecondJob(String pathin, String pathout) throws Exception {
Job job = new Job(conf);
job.setJarByClass(ExerciseDriver.class);
job.setMapperClass(ExerciseMapper2.class);
job.setReducerClass(ExerciseReducer2.class);
job.setInputFormatClass(KeyValueTextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job,new Path(pathin));
FileOutputFormat.setOutputPath(job, new Path(pathout));
boolean success = job.waitForCompletion(true);
return success ? 0 : -1;
}
}
答案 1 :(得分:0)
如果您想一个接一个地执行,那么您可以按照以下链接链接您的工作:
http://unmeshasreeveni.blogspot.in/2014/04/chaining-jobs-in-hadoop-mapreduce.html
答案 2 :(得分:0)
You can go with Parallel job running. Sample code is given below
Configuration conf = new Configuration();
Path Job1InputDir = new Path(args[0]);
Path Job2InputDir = new Path(args[1]);
Path Job1OutputDir = new Path(args[2]);
Path Job2OutputDir = new Path(args[3]);
Job Job1= submitJob(conf, Job1InputDir , Job1OutputDir );
Job Job2= submitJob(conf, Job2InputDir , Job2OutputDir );
// While both jobs are not finished, sleep
while (!Job1.isComplete() || !Job2.isComplete()) {
Thread.sleep(5000);
}
if (Job1.isSuccessful()) {
System.out.println(" job1 completed successfully!");
} else {
System.out.println(" job1 failed!");
}
if (Job2.isSuccessful()) {
System.out.println("Job2 completed successfully!");
} else {
System.out.println("Job2 failed!");
}
System.exit(Job1.isSuccessful() &&
Job2.isSuccessful() ? 0 : 1);
}