我正在尝试通过布尔公式实现Tseitin转换。我们的想法是使用转换规则在CNF中转换布尔公式。例如,如果公式f = l OR r,我们为每个公式分配一个新变量,让我们说v_f,v_l和v_r,我们将f = l OR r
变换为(!v_f OR v_l OR v_r)
AND {{ 1}}和(v_f OR !v_l)
。
我使用类似(v_f OR !v_r)
,v_f
和v_l
的内容替换为v_r
,p
和p1
。{{1} }是一个变量,它允许我们现在可以使用下一个变量):
p2
在主要内容中,我将此转换称为:m
但我遇到如下错误:int m = 0;
std::vector<std::vector<int> > formules;
struct op_or {};
struct op_and {};
struct op_not {};
struct op_impl {};
typedef int var;
template <typename tag> struct binop;
template <typename tag> struct unop;
typedef boost::variant<var,
boost::recursive_wrapper<unop <op_not> >,
boost::recursive_wrapper<binop<op_and> >,
boost::recursive_wrapper<binop<op_or> >,
boost::recursive_wrapper<binop<op_impl> >
> expr;
template <typename tag> struct binop
{
explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
expr oper1, oper2;
};
template <typename tag> struct unop
{
explicit unop(const expr& o) : oper1(o) { }
expr oper1;
};
struct tseitin : boost::static_visitor<void>
{
tseitin() {}
void operator()(const var& v, int p = 0) {}
void operator()(const binop<op_and>& b, int p = m++) { proceed(0, b.oper1, b.oper2, p); }
void operator()(const binop<op_or>& b, int p = m++) { proceed(1, b.oper1, b.oper2, p);}
void operator()(const unop<op_not>& u, int p = m++) {}
void proceed(int nop, const expr& l, const expr& r, int p)
{
int p1 = m+1;
int p2 = m+2;
m += 2;
// Do the transformation
recurse(l, p1);
recurse(r, p2);
}
private:
template<typename T, typename U>
bool recurse(T const& v, U const& p)
{ return boost::apply_visitor(*this, v, p); }
};
并且:boost::apply_visitor(tseitin(), result, 0);
我真的不明白这个错误,你有什么想法吗?
正如您可能已经注意到的那样,我使用How to calculate boolean expression in Spirit和boost精神教程来实现转换操作符。
我需要整个代码,现在就让我吧。
提前致谢!
答案 0 :(得分:2)
我真的不明白这个错误,你有什么想法吗?
您正在调用boost::variant::apply_visitor
的二进制版本。但是你传递了一个变量和一个int。正如错误消息所宣布的那样,int不可访问。
要使这项工作,只需绑定参数:
boost::apply_visitor(boost::bind(tseitin(), _1, 0), result);
这意味着_1
占位符将接收变量元素,并传递第二个参数。
您还希望在recurse
中执行此操作:
bool recurse(T const& v, U const& p)
{ return boost::apply_visitor(boost::bind(*this, _1, p), v); }
以下是链接答案的演示,但使用额外的绑定参数而不是有状态的printer
仿函数:
struct printer : boost::static_visitor<void>
{
//
void operator()(std::ostream& os, const var& v) const { os << v; }
void operator()(std::ostream& os, const binop<op_and>& b) const { print(os, " & ", b.oper1, b.oper2); }
void operator()(std::ostream& os, const binop<op_or >& b) const { print(os, " | ", b.oper1, b.oper2); }
void print(std::ostream& os, const std::string& op, const expr& l, const expr& r) const
{
os << "(";
boost::apply_visitor(boost::bind(*this, boost::ref(os), _1), l);
os << op;
boost::apply_visitor(boost::bind(*this, boost::ref(os), _1), r);
os << ")";
}
void operator()(std::ostream& os, const unop<op_not>& u) const
{
os << "(";
os << "!";
boost::apply_visitor(boost::bind(*this, boost::ref(os), _1), u.oper1);
os << ")";
}
};
完整代码:
<强> Live On Coliru 强>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/variant/recursive_wrapper.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/bind.hpp>
namespace qi = boost::spirit::qi;
namespace phx = boost::phoenix;
struct op_or {};
struct op_and {};
struct op_not {};
typedef std::string var;
template <typename tag> struct binop;
template <typename tag> struct unop;
typedef boost::variant<var,
boost::recursive_wrapper<unop <op_not> >,
boost::recursive_wrapper<binop<op_and> >,
boost::recursive_wrapper<binop<op_or> >
> expr;
template <typename tag> struct binop
{
explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
expr oper1, oper2;
};
template <typename tag> struct unop
{
explicit unop(const expr& o) : oper1(o) { }
expr oper1;
};
struct eval : boost::static_visitor<bool>
{
eval() {}
//
bool operator()(const var& v) const
{
if (v=="T" || v=="t" || v=="true" || v=="True")
return true;
else if (v=="F" || v=="f" || v=="false" || v=="False")
return false;
return boost::lexical_cast<bool>(v);
}
bool operator()(const binop<op_and>& b) const
{
return recurse(b.oper1) && recurse(b.oper2);
}
bool operator()(const binop<op_or>& b) const
{
return recurse(b.oper1) || recurse(b.oper2);
}
bool operator()(const unop<op_not>& u) const
{
return !recurse(u.oper1);
}
private:
template<typename T>
bool recurse(T const& v) const
{ return boost::apply_visitor(*this, v); }
};
struct printer : boost::static_visitor<void>
{
//
void operator()(std::ostream& os, const var& v) const { os << v; }
void operator()(std::ostream& os, const binop<op_and>& b) const { print(os, " & ", b.oper1, b.oper2); }
void operator()(std::ostream& os, const binop<op_or >& b) const { print(os, " | ", b.oper1, b.oper2); }
void print(std::ostream& os, const std::string& op, const expr& l, const expr& r) const
{
os << "(";
boost::apply_visitor(boost::bind(*this, boost::ref(os), _1), l);
os << op;
boost::apply_visitor(boost::bind(*this, boost::ref(os), _1), r);
os << ")";
}
void operator()(std::ostream& os, const unop<op_not>& u) const
{
os << "(";
os << "!";
boost::apply_visitor(boost::bind(*this, boost::ref(os), _1), u.oper1);
os << ")";
}
};
bool evaluate(const expr& e)
{ return boost::apply_visitor(eval(), e); }
std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(boost::bind(printer(), boost::ref(os), _1), e); return os; }
template <typename It, typename Skipper = qi::space_type>
struct parser : qi::grammar<It, expr(), Skipper>
{
parser() : parser::base_type(expr_)
{
using namespace qi;
expr_ = or_.alias();
or_ = (and_ >> '|' >> or_ ) [ _val = phx::construct<binop<op_or > >(qi::_1, qi::_2) ] | and_ [ _val = qi::_1 ];
and_ = (not_ >> '&' >> and_) [ _val = phx::construct<binop<op_and> >(qi::_1, qi::_2) ] | not_ [ _val = qi::_1 ];
not_ = ('!' > simple ) [ _val = phx::construct<unop <op_not> >(qi::_1) ] | simple [ _val = qi::_1 ];
simple = (('(' > expr_ > ')') | var_);
var_ = qi::lexeme[ +(alpha|digit) ];
BOOST_SPIRIT_DEBUG_NODE(expr_);
BOOST_SPIRIT_DEBUG_NODE(or_);
BOOST_SPIRIT_DEBUG_NODE(and_);
BOOST_SPIRIT_DEBUG_NODE(not_);
BOOST_SPIRIT_DEBUG_NODE(simple);
BOOST_SPIRIT_DEBUG_NODE(var_);
}
private:
qi::rule<It, var() , Skipper> var_;
qi::rule<It, expr(), Skipper> not_, and_, or_, simple, expr_;
};
int main()
{
const std::string inputs[] = {
std::string("true & false;"),
std::string("true & !false;"),
std::string("!true & false;"),
std::string("true | false;"),
std::string("true | !false;"),
std::string("!true | false;"),
std::string("T&F;"),
std::string("T&!F;"),
std::string("!T&F;"),
std::string("T|F;"),
std::string("T|!F;"),
std::string("!T|F;"),
std::string("") // marker
};
for (const std::string *i = inputs; !i->empty(); ++i)
{
typedef std::string::const_iterator It;
It f(i->begin()), l(i->end());
parser<It> p;
try
{
expr result;
bool ok = qi::phrase_parse(f,l,p > ';',qi::space,result);
if (!ok)
std::cerr << "invalid input\n";
else
{
std::cout << "result:\t" << result << "\n";
std::cout << "evaluated:\t" << evaluate(result) << "\n";
}
} catch (const qi::expectation_failure<It>& e)
{
std::cerr << "expectation_failure at '" << std::string(e.first, e.last) << "'\n";
}
if (f!=l) std::cerr << "unparsed: '" << std::string(f,l) << "'\n";
}
return 0;
}