减少阶段期间Mapreduce java堆空间错误

时间:2015-04-06 09:16:26

标签: java hadoop mapreduce

我有一个简单的mapreduce作业来构建一个tfidf索引但是当reducer大约是时,我总是遇到java堆空间错误。 70%。我尝试了不同的方法,使用各种结构,告诉我的工作在命令中使用更多内存并在较小的样本上运行我的工作,但没有任何改变甚至略有改变。我在我的想法的最后,所以我将不胜感激任何提示。

Mapper产生正确的输出,但是由于java堆空间错误,reducer总是失败。

这是我正在运行的命令(我正在尝试指定使用的内存量):hadoop jar WordCountMPv1.jar -D mapreduce.map.memory.mb=2048 -D mapreduce.reduce.memory.mb=2048 --input /user/myslima3/wiki2 --output /user/myslima3/index

我的整个mapreduce代码:

public class Indexer extends Configured implements Tool {


    /*
     * Vocabulary: key = term, value = index
     */
    private static Map<String, Integer> vocab = new HashMap<String, Integer>();
    private static Map<String, Double> mapIDF = new HashMap<String, Double>();
    private static final int DOC_COUNT = 751300; // total number of documents

    public static void main(String[] arguments) throws Exception {
        System.exit(ToolRunner.run(new Indexer(), arguments));
    }

    public static class Comparator extends WritableComparator {
        protected Comparator() {
            super(Text.class, true);
        }

        @Override
        public int compare(WritableComparable a, WritableComparable b) {
            return -a.compareTo(b);
        }
    }

    public static class IndexerMapper extends
            Mapper<Object, Text, IntWritable, Text> {
        private Text result = new Text();

        // load vocab from distributed cache
        public void setup(Context context) throws IOException {
            Configuration conf = context.getConfiguration();
            FileSystem fs = FileSystem.get(conf);
            URI[] cacheFiles = DistributedCache.getCacheFiles(conf);
            Path getPath = new Path(cacheFiles[0].getPath());

            BufferedReader bf = new BufferedReader(new InputStreamReader(
                    fs.open(getPath)));
            String line = null;
            while ((line = bf.readLine()) != null) {
                StringTokenizer st = new StringTokenizer(line, " \t");

                int index = Integer.parseInt(st.nextToken()); // first token is the line number - term id
                String word = st.nextToken(); // second element is the term
                double IDF = Integer.parseInt(st.nextToken()); // third token is the DF

                // compute IDF
                IDF = (Math.log(DOC_COUNT / IDF));
                mapIDF.put(word, IDF);

                // save vocab
                vocab.put(word, index);

            }
        }

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {

            // init TF map
            Map<String, Integer> mapTF = new HashMap<String, Integer>();

            // parse input string
            StringTokenizer st = new StringTokenizer(value.toString(), " \t");

            // first element is doc index
            int index = Integer.parseInt(st.nextToken());
            //sb.append(index + "\t");

            // count term frequencies
            String word;
            while (st.hasMoreTokens()) {
                word = st.nextToken();

                // check if word is in the vocabulary
                if (vocab.containsKey(word)) {
                    if (mapTF.containsKey(word)) {
                        int count = mapTF.get(word);
                        mapTF.put(word, count + 1);
                    } else {
                        mapTF.put(word, 1);
                    }
                }
            }

            // compute TF-IDF
            double idf;
            double tfidf;
            int wordIndex;
            for (String term : mapTF.keySet()) {
                int tf = mapTF.get(term);

                if (mapIDF.containsKey(term)) {
                    idf = mapIDF.get(term);

                    tfidf = tf * idf;
                    wordIndex = vocab.get(term);

                    context.write(new IntWritable(wordIndex), new Text(index + ":" + tfidf));
                }

            }               
        }
    }

    public static class IndexerReducer extends Reducer<IntWritable, Text, IntWritable, Text>
    {
        @Override
        public void reduce(IntWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException
        {

            // reset vocab and maps to reduce memory
            vocab = null;
            mapIDF = null;

            StringBuilder sb = new StringBuilder();

            for (Text value : values)
            {
                sb.append(value.toString() + " ");
            }

            context.write(key, new Text(sb.toString()));
        }
    }

    @Override
    public int run(String[] arguments) throws Exception {
        ArgumentParser parser = new ArgumentParser("TextPreprocessor");

        parser.addArgument("input", true, true, "specify input directory");
        parser.addArgument("output", true, true, "specify output directory");

        parser.parseAndCheck(arguments);

        Path inputPath = new Path(parser.getString("input"));
        Path outputDir = new Path(parser.getString("output"));

        // Create configuration.
        Configuration conf = getConf();

        // add distributed file with vocabulary
        DistributedCache
                .addCacheFile(new URI("/user/myslima3/vocab.txt"), conf);

        // Create job.
        Job job = new Job(conf, "WordCount");
        job.setJarByClass(IndexerMapper.class);

        // Setup MapReduce.
        job.setMapperClass(IndexerMapper.class);
        job.setReducerClass(IndexerReducer.class);

        // Sort the output words in reversed order.
        job.setSortComparatorClass(Comparator.class);


        job.setNumReduceTasks(1);

        // Specify (key, value).
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(Text.class);

        // Input.
        FileInputFormat.addInputPath(job, inputPath);
        job.setInputFormatClass(TextInputFormat.class);

        // Output.
        FileOutputFormat.setOutputPath(job, outputDir);
        job.setOutputFormatClass(TextOutputFormat.class);

        FileSystem hdfs = FileSystem.get(conf);

        // Delete output directory (if exists).
        if (hdfs.exists(outputDir))
            hdfs.delete(outputDir, true);

        // Execute the job.
        return job.waitForCompletion(true) ? 0 : 1;
    }
}

感谢您的帮助!

编辑:stacktrace

15/04/06 10:54:38 INFO mapreduce.Job:  map 0% reduce 0%
15/04/06 10:54:52 INFO mapreduce.Job:  map 25% reduce 0%
15/04/06 10:54:54 INFO mapreduce.Job:  map 31% reduce 0%
15/04/06 10:54:55 INFO mapreduce.Job:  map 50% reduce 0%
15/04/06 10:54:56 INFO mapreduce.Job:  map 55% reduce 0%
15/04/06 10:54:58 INFO mapreduce.Job:  map 58% reduce 0%
15/04/06 10:55:00 INFO mapreduce.Job:  map 63% reduce 0%
15/04/06 10:55:07 INFO mapreduce.Job:  map 69% reduce 0%
15/04/06 10:55:08 INFO mapreduce.Job:  map 82% reduce 0%
15/04/06 10:55:10 INFO mapreduce.Job:  map 88% reduce 0%
15/04/06 10:55:11 INFO mapreduce.Job:  map 96% reduce 0%
15/04/06 10:55:12 INFO mapreduce.Job:  map 100% reduce 0%
15/04/06 10:55:25 INFO mapreduce.Job:  map 100% reduce 29%
15/04/06 10:55:31 INFO mapreduce.Job:  map 100% reduce 36%
15/04/06 10:55:34 INFO mapreduce.Job:  map 100% reduce 48%
15/04/06 10:55:37 INFO mapreduce.Job:  map 100% reduce 61%
15/04/06 10:55:40 INFO mapreduce.Job:  map 100% reduce 68%
15/04/06 10:55:43 INFO mapreduce.Job:  map 100% reduce 71%
15/04/06 10:55:44 INFO mapreduce.Job: Task Id : attempt_1427101801879_0658_r_000000_0, Status : FAILED
Error: Java heap space

2 个答案:

答案 0 :(得分:1)

仔细查看在reducer中附加的StringBuffer。你没有指定一个初始大小(我认为)默认为16.随着它的增长它需要将自己复制到一个越来越大的缓冲区,所以你最终得到长度为16,32,48,64的缓冲区...... (不确定增长量,但你得到的图片)。无论如何,传递给reducer的大量值会导致大量内存被使用,垃圾收集可以处理大部分内存,直到StringBuffer变得太大而无法增长。换句话说,这不能很好地扩展。

鉴于这是您选择的算法,我只能建议您尝试给出一个非常大的初始大小,看看您是否能够幸运并强制适应可用内存的增长。

如果做不到这一点,您可以创建一个特殊的OutputFormat,它能够在写入时连接值,并在键发生变化时创建新行,但我还没有想到这一点。

答案 1 :(得分:0)

解决了我指定更多数量的reducer并实现合并器的问题。