在MATLAB中使用clusterdata时出现内存不足错误

时间:2010-05-31 21:42:33

标签: matlab cluster-analysis hierarchical

我正在尝试聚类Matrix(大小:20057x2)。:

T = clusterdata(X,cutoff);

但是我收到了这个错误:

??? Error using ==> pdistmex
Out of memory. Type HELP MEMORY for your options.

Error in ==> pdist at 211
    Y = pdistmex(X',dist,additionalArg);

Error in ==> linkage at 139
       Z = linkagemex(Y,method,pdistArg);

Error in ==> clusterdata at 88
Z = linkage(X,linkageargs{1},pdistargs);

Error in ==> kmeansTest at 2
T = clusterdata(X,1);
有人可以帮助我。我有4GB的内存,但认为问题来自其他地方..

3 个答案:

答案 0 :(得分:13)

正如其他人所提到的,层次聚类需要计算成对距离矩阵,该矩阵太大而不适合你的情况。

尝试使用K-Means算法:

numClusters = 4;
T = kmeans(X, numClusters);

或者,您可以选择数据的随机子集,并将其用作聚类算法的输入。接下来,将聚类中心计算为每个聚类组的平均值/中值。最后,对于未在子集中选择的每个实例,您只需计算其与每个质心的距离,并将其分配给最近的一个。

以下是一个示例代码,用于说明上述想法:

%# random data
X = rand(25000, 2);

%# pick a subset
SUBSET_SIZE = 1000;            %# subset size
ind = randperm(size(X,1));
data = X(ind(1:SUBSET_SIZE), :);

%# cluster the subset data
D = pdist(data, 'euclid');
T = linkage(D, 'ward');
CUTOFF = 0.6*max(T(:,3));      %# CUTOFF = 5;
C = cluster(T, 'criterion','distance', 'cutoff',CUTOFF);
K = length( unique(C) );       %# number of clusters found

%# visualize the hierarchy of clusters
figure(1)
h = dendrogram(T, 0, 'colorthreshold',CUTOFF);
set(h, 'LineWidth',2)
set(gca, 'XTickLabel',[], 'XTick',[])

%# plot the subset data colored by clusters
figure(2)
subplot(121), gscatter(data(:,1), data(:,2), C), axis tight

%# compute cluster centers
centers = zeros(K, size(data,2));
for i=1:size(data,2)
    centers(:,i) = accumarray(C, data(:,i), [], @mean);
end

%# calculate distance of each instance to all cluster centers
D = zeros(size(X,1), K);
for k=1:K
    D(:,k) = sum( bsxfun(@minus, X, centers(k,:)).^2, 2);
end
%# assign each instance to the closest cluster
[~,clustIDX] = min(D, [], 2);

%#clustIDX( ind(1:SUBSET_SIZE) ) = C;

%# plot the entire data colored by clusters
subplot(122), gscatter(X(:,1), X(:,2), clustIDX), axis tight

dendrogram clusters

答案 1 :(得分:2)

X在32位机器上太大了。 pdist试图制作一个201,131,596行向量(clusterdata使用pdist)的双精度数,这将耗尽约1609MB(double为8个字节)...如果你使用/ 3GB开关在Windows下运行它,您的最大矩阵大小限制为1536MB(参见here)。

您需要将数据分开,而不是一次性直接对所有数据进行聚类。

答案 2 :(得分:1)

PDIST计算所有可能的行对之间的距离。如果您的数据包含N = 20057行,那么对的数量将为N *(N-1)/ 2,在您的情况下为201131596。你的机器可能太多了。