漂亮的印花与免费的monad和GADTs

时间:2015-04-05 09:21:06

标签: haskell pretty-print gadt free-monad

考虑以下GADT定义的表达式functor:

{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}

import Control.Monad.Free

data ExprF :: * -> * where
  Term :: Foo a -> (a -> r) -> ExprF r

instance Functor ExprF where
  fmap f (Term d k) = Term d (f . k)

type Expr = Free ExprF

其中Foo定义为

data Foo :: * -> * where
  Bar :: Int    -> Foo Int
  Baz :: Double -> Foo Double

instance Show a => Show (Foo a) where
  show (Bar j) = show j
  show (Baz j) = show j

(a -> r)中的ExprF字段与(其他理想的)限制性GADT构造函数的组合似乎使编写一个漂亮的打印解释器变得不可能:

pretty (Pure r)          = show r
pretty (Free (Term f k)) = "Term " ++ show f ++ pretty (k _)

类型漏洞是人们所期望的:

Found hole ‘_’ with type: a1
Where: ‘a1’ is a rigid type variable bound by
            a pattern with constructor
              Term :: forall r a. Foo a -> (a -> r) -> ExprF r,
            in an equation for ‘pretty’
            at Test.hs:23:15
Relevant bindings include
  k :: a1 -> Free ExprF a (bound at Test.hs:23:22)
  f :: Foo a1 (bound at Test.hs:23:20)
  pretty :: Free ExprF a -> String (bound at Test.hs:22:1)
In the first argument of ‘k’, namely ‘_’
In the first argument of ‘pretty’, namely ‘(k _)’
In the second argument of ‘(++)’, namely ‘pretty (k _)’

似乎没有办法给延续赋予它所需类型的值。该类型在f中编码,而我正在使用的其他解释器都以某种方式处理f来提取适当类型的值。但是String表示的路径似乎被阻止了。

我在这里缺少一些常见的习语吗?如果确实可能的话,如何打印Expr的价值呢?如果不可能,ExprF的替代结构可能会捕获相同的结构,但也支持漂亮的打印机?

2 个答案:

答案 0 :(得分:4)

f上的模式匹配。如果您这样做,k的类型会被细化以匹配Foo中包含的类型:

pretty (Pure r)          = show r
pretty (Free (Term f k)) = "Term " ++ show f ++ pretty r where
  r = case f of
    Bar a -> k a
    Baz a -> k a

您可能想要分解这种模式:

applyToFoo :: (a -> r) -> Foo a -> r
applyToFoo f (Bar a) = f a
applyToFoo f (Baz a) = f a

pretty (Pure r)          = show r
pretty (Free (Term f k)) = "Term " ++ show f ++ pretty (applyToFoo k f)

答案 1 :(得分:2)

嗯,这不是不可能的。至少你可以在f上进行模式匹配:

pretty :: (Show a) => Expr a -> String
pretty (Pure r) = show r
pretty (Free (Term f@(Bar x) k)) = "Term " ++ show f ++ pretty (k x)
pretty (Free (Term f@(Baz x) k)) = "Term " ++ show f ++ pretty (k x)

但这不是很令人满意,因为你已经在Foo show个实例中做过了。

然后,挑战是适当抽象。