我在python中使用多处理模块使函数并行运行。
函数名称是:
Parallel_Solution_Combination_Method(subset, i):
子集参数是一个由染色体元组组成的列表元素。
染色体是我在同一个脚本中定义的类。 我在基于Lubuntu Linux的操作系统上运行。我尝试并行运行该函数的代码是:
pool = mp.Pool(processes=2)
results = [pool.apply_async(Parallel_Solution_Combination_Method,
args=(subsets[i],i,)
)
for i in range(len(subsets))
]
然而,我鼓励的问题是,每当我指定多于1的进程数时,结果就不会如预期的那样,让我们说如果我传递一个大小为10的子集列表我正在使用:
processes=2
然后前两个输出产生完全相同的值,输出3和4相同,依此类推,而如果我指定进程数:
processes = 1
基本上是顺序运行,然后结果按预期正确(与没有多处理的循环的正常情况相同。
我不知道为什么我的结果混淆了,即使我明确地从傻瓜循环的索引i指定的集合中发送不同的元组。
args=(subsets[i],i,)
我在具有两个内核的硬件上运行,所以我希望我可以并行运行该函数的两个实例,但结果是它产生了重复的结果。我无法弄清楚我做错了什么。 请帮忙!!谢谢。
def Parallel_Solution_Combination_Method(subset, counter):
print 'entered parallel sol comb'
child_chromosome = chromosome()
combination_model_offset = 300
attempts = 0
while True:
template1 = subset[0].record_template
template2 = subset[1].record_template
template_child = template1
template_gap1 = find_allIndices(template1, '-')
template_gap2 = find_allIndices(template2, '-')
if(len(template_gap1) !=0 and len(template_gap2) != 0):
template_gap_difference = find_different_indicies(template_gap1, template_gap2)
if(len(template_gap_difference) != 0):
template_slice_point = random.choice(template_gap_difference)
if(template_gap2[template_slice_point -1] < template_gap1[template_slice_point]):
#swap template1 template2 values as well as their respective gap indices
#so that in crossover the gaps would not collide with each other.
temp_template = template1
temp_gap = template_gap1
template1 = template2
template2 = temp_template
template_gap1 = template_gap2
template_gap2 = temp_gap
#the crossing over takes the first part of the child sequence to be up until
#the crossing point without including it. this way it ensures that the resulting
#child sequence is different from both of the parents by at least one point.
child_template_gap = template_gap1[:template_slice_point]+template_gap2[template_slice_point:]
child_gap_part1 = child_template_gap[:template_slice_point]
child_gap_part2 = child_template_gap[template_slice_point:]
if template_slice_point == 0:
template_child = template2
else:
template_child = template1[:template_gap1[template_slice_point]]
template_residues_part1 = str(template_child).translate(None, '-')
template_residues_part2 = str(template2).translate(None, '-')
template_residues_part2 = template_residues_part2[len(template_residues_part1):]
for i in range(template_gap1[template_slice_point-1], len(template1)):
if i in child_gap_part2:
template_child = template_child + '-'
else:
template_child = template_child + template_residues_part2[0:1]
template_residues_part2 = template_residues_part2[1:]
target1 = subset[0].record_target
target2 = subset[1].record_target
target_child = target1
target_gap1 = find_allIndices(target1, '-')
target_gap2 = find_allIndices(target2, '-')
if(len(target_gap1) !=0 and len(target_gap2) != 0):
target_gap_difference = find_different_indicies(target_gap1, target_gap2)
if(len(target_gap_difference) !=0):
target_slice_point = random.choice(target_gap_difference)
if(target_gap2[target_slice_point -1] < target_gap1[target_slice_point]):
#swap template1 template2 values as well as their respective gap indices
#so that in crossover the gaps would not collide with each other.
temp_target = target1
temp_gap = target_gap1
target1 = target2
target2 = temp_target
target_gap1 = target_gap2
target_gap2 = temp_gap
#the crossing over takes the first part of the child sequence to be up until
#the crossing point without including it. this way it ensures that the resulting
#child sequence is different from both of the parents by at least one point.
child_target_gap = target_gap1[:target_slice_point]+target_gap2[target_slice_point:]
child_gap_part1 = child_target_gap[:target_slice_point]
child_gap_part2 = child_target_gap[target_slice_point:]
if target_slice_point == 0:
target_child = target2
else:
target_child = target1[:target_gap1[target_slice_point]]
target_residues_part1 = str(target_child).translate(None, '-')
target_residues_part2 = str(target2).translate(None, '-')
target_residues_part2 = target_residues_part2[len(target_residues_part1):]
for i in range(target_gap1[target_slice_point-1], len(target1)):
if i in child_gap_part2:
target_child = target_child + '-'
else:
target_child = target_child + target_residues_part2[0:1]
target_residues_part2 = target_residues_part2[1:]
if not [False for y in Reference_Set if y.record_template == template_child and y.record_target == target_child] or attempts <= 100:
break
attempts +=1
child_chromosome.record_template = template_child
#print template_child
child_chromosome.record_target = target_child
#print target_child
generate_PIR(template_header, template_description, child_chromosome.record_template, target_header,target_description, child_chromosome.record_target)
output_values = start_model(template_id, target_id,'PIR_input.ali', combination_model_offset + counter)
child_chromosome.molpdf_score = output_values['molpdf']
#print output_values['molpdf']
mdl = complete_pdb(env, '1BBH.B99990'+ str(combination_model_offset + counter)+'.pdb')
child_chromosome.normalized_dope_score = mdl.assess_normalized_dope()
#print mdl.assess_normalized_dope()
return child_chromosome
这是Parallel_Soultion_Combination_Method的代码,如果它变得很方便,我还包括我定义的染色体类:
class chromosome():
"""basic solution represenation that holds alignments and it's evaluations"""
def __init__(self):
self.record_template = ''
self.record_target = ''
self.molpdf_score = 0.0
self.ga341_score = 0.0
self.dope_score = 0.0
self.normalized_dope_score = 0.0
self.flag_value = 0
self.distance_value = 0
def add_molpdf(self, molpdf):
self.molpdf_score = molpdf
def add_ga341(self, ga341):
self.ga341_score = ga341
def add_dope(self, dope):
self.dope_score = dope
def add_normalized_dope(self, normalized_dope):
self.normalized_dope_score = normalized_dope
def add_records(self, records):
self.seq_records = records
for rec in self.seq_records:
if rec.id == template_id:
self.record_template = rec.seq
elif rec.id == target_id:
self.record_target = rec.seq
def set_flag(self, flag):
self.flag_value = flag
def add_distance(self, distance):
self.distance_value = distance
请注意,所有这些都在同一个python脚本中。