使用多处理模块在python中并行执行函数

时间:2015-04-05 06:36:03

标签: python parallel-processing multiprocessing

我在python中使用多处理模块使函数并行运行。

函数名称是:

Parallel_Solution_Combination_Method(subset, i):

子集参数是一个由染色体元组组成的列表元素。

染色体是我在同一个脚本中定义的类。 我在基于Lubuntu Linux的操作系统上运行。我尝试并行运行该函数的代码是:

pool = mp.Pool(processes=2)
 results = [pool.apply_async(Parallel_Solution_Combination_Method, 
                             args=(subsets[i],i,)
                             )
                             for i in range(len(subsets))
           ]
然而,我鼓励的问题是,每当我指定多于1的进程数时,结果就不会如预期的那样,让我们​​说如果我传递一个大小为10的子集列表我正在使用:

processes=2

然后前两个输出产生完全相同的值,输出3和4相同,依此类推,而如果我指定进程数:

processes = 1

基本上是顺序运行,然后结果按预期正确(与没有多处理的循环的正常情况相同。

我不知道为什么我的结果混淆了,即使我明确地从傻瓜循环的索引i指定的集合中发送不同的元组。

 args=(subsets[i],i,)

我在具有两个内核的硬件上运行,所以我希望我可以并行运行该函数的两个实例,但结果是它产生了重复的结果。我无法弄清楚我做错了什么。 请帮忙!!谢谢。

def Parallel_Solution_Combination_Method(subset, counter):

print 'entered parallel sol comb'
child_chromosome = chromosome()   
combination_model_offset = 300

attempts = 0
while True:

        template1 = subset[0].record_template
        template2 = subset[1].record_template
        template_child = template1

        template_gap1 = find_allIndices(template1, '-')
        template_gap2 = find_allIndices(template2, '-')

        if(len(template_gap1) !=0 and len(template_gap2) != 0):
            template_gap_difference = find_different_indicies(template_gap1, template_gap2)
            if(len(template_gap_difference) != 0):        
                template_slice_point = random.choice(template_gap_difference)

                if(template_gap2[template_slice_point -1] < template_gap1[template_slice_point]):
                    #swap template1 template2 values as well as their respective gap indices
                    #so that in crossover the gaps would not collide with each other.
                    temp_template = template1
                    temp_gap = template_gap1

                    template1 = template2
                    template2  = temp_template
                    template_gap1 = template_gap2
                    template_gap2 = temp_gap

                #the crossing over takes the first part of the child sequence to be up until
                #the crossing point without including it. this way it ensures that the resulting
                #child sequence is different from both of the parents by at least one point.

                child_template_gap = template_gap1[:template_slice_point]+template_gap2[template_slice_point:]
                child_gap_part1 = child_template_gap[:template_slice_point]
                child_gap_part2 = child_template_gap[template_slice_point:]           

                if template_slice_point == 0:
                    template_child = template2
                else:
                    template_child = template1[:template_gap1[template_slice_point]]            

                    template_residues_part1 = str(template_child).translate(None, '-')
                    template_residues_part2 = str(template2).translate(None, '-')
                    template_residues_part2 = template_residues_part2[len(template_residues_part1):]


                    for i in range(template_gap1[template_slice_point-1], len(template1)):
                        if i in child_gap_part2:
                            template_child = template_child + '-'
                        else:
                            template_child = template_child + template_residues_part2[0:1]
                            template_residues_part2 = template_residues_part2[1:]                       


        target1 = subset[0].record_target
        target2 = subset[1].record_target
        target_child = target1

        target_gap1 = find_allIndices(target1, '-')
        target_gap2 = find_allIndices(target2, '-')    

        if(len(target_gap1) !=0 and len(target_gap2) != 0):
            target_gap_difference = find_different_indicies(target_gap1, target_gap2)
            if(len(target_gap_difference) !=0):
                target_slice_point = random.choice(target_gap_difference)        
                if(target_gap2[target_slice_point -1] < target_gap1[target_slice_point]):
                    #swap template1 template2 values as well as their respective gap indices
                    #so that in crossover the gaps would not collide with each other.
                    temp_target = target1
                    temp_gap = target_gap1

                    target1 = target2
                    target2  = temp_target
                    target_gap1 = target_gap2
                    target_gap2 = temp_gap

                #the crossing over takes the first part of the child sequence to be up until
                #the crossing point without including it. this way it ensures that the resulting
                #child sequence is different from both of the parents by at least one point.

                child_target_gap = target_gap1[:target_slice_point]+target_gap2[target_slice_point:]
                child_gap_part1 = child_target_gap[:target_slice_point]
                child_gap_part2 = child_target_gap[target_slice_point:]           

                if target_slice_point == 0:
                    target_child = target2
                else:
                    target_child = target1[:target_gap1[target_slice_point]]            

                    target_residues_part1 = str(target_child).translate(None, '-')
                    target_residues_part2 = str(target2).translate(None, '-')
                    target_residues_part2 = target_residues_part2[len(target_residues_part1):]


                    for i in range(target_gap1[target_slice_point-1], len(target1)):
                        if i in child_gap_part2:
                            target_child = target_child + '-'
                        else:
                            target_child = target_child + target_residues_part2[0:1]
                            target_residues_part2 = target_residues_part2[1:]    

        if not [False for y in Reference_Set if y.record_template == template_child and y.record_target == target_child] or attempts <= 100:
            break
        attempts +=1


child_chromosome.record_template = template_child
#print template_child                            
child_chromosome.record_target = target_child
#print target_child
generate_PIR(template_header, template_description, child_chromosome.record_template, target_header,target_description, child_chromosome.record_target)

output_values = start_model(template_id, target_id,'PIR_input.ali', combination_model_offset + counter)
child_chromosome.molpdf_score = output_values['molpdf']
#print output_values['molpdf']
mdl = complete_pdb(env, '1BBH.B99990'+ str(combination_model_offset + counter)+'.pdb')
child_chromosome.normalized_dope_score = mdl.assess_normalized_dope() 
#print mdl.assess_normalized_dope() 

return child_chromosome

这是Parallel_Soultion_Combination_Method的代码,如果它变得很方便,我还包括我定义的染色体类:

class chromosome():
"""basic solution represenation that holds alignments and it's evaluations"""
def __init__(self):

    self.record_template = ''
    self.record_target = ''
    self.molpdf_score = 0.0
    self.ga341_score = 0.0
    self.dope_score = 0.0
    self.normalized_dope_score = 0.0
    self.flag_value = 0
    self.distance_value = 0

def add_molpdf(self, molpdf):
    self.molpdf_score = molpdf
def add_ga341(self, ga341):
    self.ga341_score = ga341
def add_dope(self, dope):
    self.dope_score = dope
def add_normalized_dope(self, normalized_dope):
    self.normalized_dope_score = normalized_dope
def add_records(self, records):
    self.seq_records = records
    for rec in self.seq_records:            
        if rec.id == template_id:                 
            self.record_template = rec.seq
        elif rec.id == target_id:
            self.record_target = rec.seq  
def set_flag(self, flag):
    self.flag_value = flag
def add_distance(self, distance):
    self.distance_value = distance

请注意,所有这些都在同一个python脚本中。

0 个答案:

没有答案