是否存在“optmistic approach to lock-free FIFO queues" algorithm?
的C ++实现(源代码)答案 0 :(得分:11)
Herb Sutter涵盖了Dobbs Journal博士的有效并发专栏中的这样一个队列。
答案 1 :(得分:4)
我想总结 greyfade 给出的答案,它基于http://www.drdobbs.com/high-performance-computing/212201163(文章的最后部分),优化的代码将是(经过一些修改)适合我的命名和编码惯例): `
template <typename T> class LFQueue {
private:
struct LFQNode {
LFQNode( T* val ) : value(val), next(nullptr) { }
T* value;
AtomicPtr<LFQNode> next;
char pad[CACHE_LINE_SIZE - sizeof(T*) - sizeof(AtomicPtr<LFQNode>)];
};
char pad0[CACHE_LINE_SIZE];
LFQNode* first; // for one consumer at a time
char pad1[CACHE_LINE_SIZE - sizeof(LFQNode*)];
InterlockedFlag consumerLock; // shared among consumers
char pad2[CACHE_LINE_SIZE - sizeof(InterlockedFlag)];
LFQNode* last; // for one producer at a time
char pad3[CACHE_LINE_SIZE - sizeof(LFQNode*)];
InterlockedFlag producerLock; // shared among producers
char pad4[CACHE_LINE_SIZE - sizeof(InterlockedFlag)];
public:
LFQueue() {
first = last = new LFQNode( nullptr ); // no more divider
producerLock = consumerLock = false;
}
~LFQueue() {
while( first != nullptr ) {
LFQNode* tmp = first;
first = tmp->next;
delete tmp;
}
}
bool pop( T& result ) {
while( consumerLock.set(true) )
{ } // acquire exclusivity
if( first->next != nullptr ) { // if queue is nonempty
LFQNode* oldFirst = first;
first = first->next;
T* value = first->value; // take it out
first->value = nullptr; // of the Node
consumerLock = false; // release exclusivity
result = *value; // now copy it back
delete value; // and clean up
delete oldFirst; // both allocations
return true; // and report success
}
consumerLock = false; // release exclusivity
return false; // queue was empty
}
bool push( const T& t ) {
LFQNode* tmp = new LFQNode( t ); // do work off to the side
while( producerLock.set(true) )
{ } // acquire exclusivity
last->next = tmp; // A: publish the new item
last = tmp; // B: not "last->next"
producerLock = false; // release exclusivity
return true;
}
};
`
另一个问题是你如何定义CACHE_LINE_SIZE?它的CPU是否有所不同?
答案 2 :(得分:1)
这是我实现的无锁FIFO。
确保T的每个项目是64字节的倍数(Intel CPU中的缓存行大小),以避免错误共享。
这段代码用gcc / mingw编译,应该用clang编译。它针对64位进行了优化,因此要使其在32位上运行需要进行一些重构。
https://github.com/vovoid/vsxu/blob/master/engine/include/vsx_fifo.h
vsx_fifo<my_struct, 512> my_fifo;
发信人:
my_struct my_struct_inst;
... fill it out ...
while (!my_fifo.produce(my_struct_inst)) {}
接收器:
my_struct my_struct_recv;
while(my_fifo.consume(my_struct_recv))
{
...do stuff...
}
答案 3 :(得分:0)
如果您正在寻找一个良好的无锁队列实现Microsoft Visual Studio 2010&amp;英特尔的线程构建模块包含一个很好的LF队列,类似于论文。
答案 4 :(得分:0)
这个lfqueue
这是跨平台,不受限制的排队线程安全队列,已经过测试 multi deq,multi enq-deq和multi enq 。确保内存安全。
例如
int* int_data;
lfqueue_t my_queue;
if (lfqueue_init(&my_queue) == -1)
return -1;
/** Wrap This scope in other threads **/
int_data = (int*) malloc(sizeof(int));
assert(int_data != NULL);
*int_data = i++;
/*Enqueue*/
while (lfqueue_enq(&my_queue, int_data) == -1) {
printf("ENQ Full ?\n");
}
/** Wrap This scope in other threads **/
/*Dequeue*/
while ( (int_data = lfqueue_deq(&my_queue)) == NULL) {
printf("DEQ EMPTY ..\n");
}
// printf("%d\n", *(int*) int_data );
free(int_data);
/** End **/
lfqueue_destroy(&my_queue);