根据另一列计算2天和5天的平均值

时间:2015-04-03 20:40:56

标签: r average

我希望根据另一个变量(停留)的数量计算温度和湿度的2天和5天平均值。如果逗留为0(今天患者入院),则应从相同日期(第1天)和前一天(第2天)的值计算平均值。类似地,对于停留1,平均值是从日期之前返回2和3的值计算的。对于所有保持8及以上的值,2天平均值是从当前日期之前的第9天和第10天计算的。停留0天的5天平均值基于第1,2,3,4和5天的值。下表显示了计算的推导方式。

需要输出示例。

Date    stay    Temperature Humidity    2d temp 5d temp
9-Mar-98    6   4.23        74.32        na     na
10-Mar-98   1   5.16        70.33        2.12   na
11-Mar-98   8   7.39        65.77        na     na
14-Mar-98   3   6.63        66.46        6.27   3.35
23-Mar-98   2   11.03       62.94        11.13  13.97
24-Mar-98   10  10.87       57.35        10.09  8.78
4-Apr-98    0   9.64        59.21        8.68   9.51
5-Apr-98    5   9.70        88.30        16.14  13.81

一些解释:3月11日的入场时间为8,平均值设为NA,因为没有值可用。 3月14日停留3,2天平均值从3月10日和11日的数值计算。另一方面,4月5日停留5,2天平均值基于3月30日和31日的值(计算从5开始计算)当前日期之前的几天)。

下表显示了计算每次入住当前日期的平均值的时间段

 stay    2d average       5d averages
    0        1,2            1,2,3,4,5
    1        2,3            2,3,4,5,6
    2        3,4            3,4,5,6,7
    3        4,5            4,5,6,7,8
    4        5,6            5,6,7,8,9
    5        6,7            6,7,8,9,10
    6        7,8            7,8,9,10,11
    7        8,9            8,9,10,11,12
    8        9,10           9,10,11,12,13

下面的示例数据。

> dput(mydata)
structure(list(date = structure(c(10294, 10295, 10296, 10297, 
10298, 10299, 10300, 10301, 10302, 10303, 10304, 10305, 10306, 
10307, 10308, 10309, 10310, 10311, 10312, 10313, 10314, 10315, 
10316, 10317, 10318, 10319, 10320, 10321, 10322, 10323, 10324
), class = "Date"), stay = c(6, 1, 8, 11, 27, 3, 4, 5, 11, 13, 
2, 17, 26, 6, 2, 10, 5, 2, 11, 24, 8, 11, 2, 8, 7, 30, 0, 5, 
1, 2, 2), temperature = c(4.23000001907349, 5.15541648864746, 
7.38499999046326, 9.47041666507721, 7.61999988555908, 6.62625002861023, 
8.71875, 11.4608333110809, 11.2570832967758, 14.5691666603088, 
10.3120833337307, 11.1216666698456, 11.1420832872391, 11.241666674614, 
11.03125, 10.8691666722298, 12.4862499237061, 13.9341666698456, 
11.8995833396912, 12.3716666698456, 12.5091667175293, 16.3833332061768, 
15.8945832252502, 7.26666665077209, 7.0091667175293, 7.73125004768372, 
9.63833332061768, 9.7045833170414, 11.4941666126251, 11.1304166316986, 
11.3908333778381), humid = c(74.3199996948242, 70.3308334350586, 
65.7658309936523, 69.2799987792969, 83.1170806884766, 66.4599990844727, 
67.4225006103516, 85.7504196166992, 89.9520797729492, 65.2566680908203, 
43.3604164123535, 51.7508316040039, 54.6866683959961, 68.2958297729492, 
62.9420852661133, 57.3504180908203, 66.4137496948242, 57.6333351135254, 
78.9029159545898, 84.5666656494141, 84.2004165649414, 71.2779159545898, 
74.0320816040039, 65.2512512207031, 58.8224983215332, 62.4949989318848, 
59.2054176330566, 88.2983322143555, 71.2545852661133, 78.0783309936523, 
51.9004173278809)), datalabel = "", time.stamp = " 3 Apr 2015 22:09", .Names = c("date", 
"stay", "temperature", "humid"), formats = c("%dD_m_Y", "%9.0g", 
"%9.0g", "%9.0g"), types = c(255L, 255L, 255L, 255L), val.labels = c("", 
"", "", ""), var.labels = c("     ", "", "temp", "rh"), expansion.fields = list(
    c("_dta", "_lang_list", "default"), c("_dta", "_lang_c", 
    "default")), row.names = c("1", "2", "3", "4", "5", "6", 
"7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", 
"18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", 
"29", "30", "31"), version = 12L, class = "data.frame")

1 个答案:

答案 0 :(得分:2)

您能举例说明您的预期输出吗?我不确定这是否正确

这是一个简单的循环。对于每一行取住停留值,加1并增加两(或五),然后提取对应于这两个索引的temperatures向量,并mean他们

mydata <- structure(list(date=structure(c(10294,10295,10296,10297,10298,10299,10300,10301,10302,10303,10304,10305,10306,10307,10308,10309,10310,10311,10312,10313,10314,10315,10316,10317,10318,10319,10320,10321,10322,10323,10324),class="Date"),stay=c(6,1,8,11,27,3,4,5,11,13,2,17,26,6,2,10,5,2,11,24,8,11,2,8,7,30,0,5,1,2,2),temperature=c(4.23000001907349,5.15541648864746,7.38499999046326,9.47041666507721,7.61999988555908,6.62625002861023,8.71875,11.4608333110809,11.2570832967758,14.5691666603088,10.3120833337307,11.1216666698456,11.1420832872391,11.241666674614,11.03125,10.8691666722298,12.4862499237061,13.9341666698456,11.8995833396912,12.3716666698456,12.5091667175293,16.3833332061768,15.8945832252502,7.26666665077209,7.0091667175293,7.73125004768372,9.63833332061768,9.7045833170414,11.4941666126251,11.1304166316986,11.3908333778381),humid=c(74.3199996948242,70.3308334350586,65.7658309936523,69.2799987792969,83.1170806884766,66.4599990844727,67.4225006103516,85.7504196166992,89.9520797729492,65.2566680908203,43.3604164123535,51.7508316040039,54.6866683959961,68.2958297729492,62.9420852661133,57.3504180908203,66.4137496948242,57.6333351135254,78.9029159545898,84.5666656494141,84.2004165649414,71.2779159545898,74.0320816040039,65.2512512207031,58.8224983215332,62.4949989318848,59.2054176330566,88.2983322143555,71.2545852661133,78.0783309936523,51.9004173278809)),datalabel="",time.stamp="3Apr201522:09",.Names=c("date","stay","temperature","humid"),formats=c("%dD_m_Y","%9.0g","%9.0g","%9.0g"),types=c(255L,255L,255L,255L),val.labels=c("","","",""),var.labels=c("","","temp","rh"),expansion.fields=list(c("_dta","_lang_list","default"),c("_dta","_lang_c","default")),row.names=c("1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19","20","21","22","23","24","25","26","27","28","29","30","31"),version=12L,class="data.frame")

res <- lapply(mydata[, 'stay'], function(x)
  c('two' = mean(mydata[(x + 1):(x + 2), 'temperature'], na.rm = TRUE),
    'five' = mean(mydata[(x + 1):(x + 5), 'temperature'], na.rm = TRUE)))

cbind(mydata, do.call('rbind', res))

#          date stay temperature    humid       two      five
# 1  1998-03-09    6    4.230000 74.32000 10.089792 11.263583
# 2  1998-03-10    1    5.155416 70.33083  6.270208  7.251417
# 3  1998-03-11    8    7.385000 65.76583 12.913125 11.680417
# 4  1998-03-12   11    9.470417 69.28000 11.131875 11.081167
# 5  1998-03-13   27    7.620000 83.11708 10.599375 10.930000
# 6  1998-03-14    3    6.626250 66.46000  8.545208  8.779250
# 7  1998-03-15    4    8.718750 67.42250  7.123125  9.136583
# 8  1998-03-16    5   11.460833 85.75042  7.672500 10.526417
# 9  1998-03-17   11   11.257083 89.95208 11.131875 11.081167
# 10 1998-03-18   13   14.569167 65.25667 11.136458 11.912500
# 11 1998-03-19    2   10.312083 43.36042  8.427708  7.964083
# 12 1998-03-20   17   11.121667 51.75083 12.916875 13.419583
# 13 1998-03-21   26   11.142083 54.68667  9.671458 10.671667
# 14 1998-03-22    6   11.241667 68.29583 10.089792 11.263583
# 15 1998-03-23    2   11.031250 62.94209  8.427708  7.964083
# 16 1998-03-24   10   10.869167 57.35042 10.716875 10.969750
# 17 1998-03-25    5   12.486250 66.41375  7.672500 10.526417
# 18 1998-03-26    2   13.934167 57.63334  8.427708  7.964083
# 19 1998-03-27   11   11.899583 78.90292 11.131875 11.081167
# 20 1998-03-28   24   12.371667 84.56667  7.370208  9.115500
# 21 1998-03-29    8   12.509167 84.20042 12.913125 11.680417
# 22 1998-03-30   11   16.383333 71.27792 11.131875 11.081167
# 23 1998-03-31    2   15.894583 74.03208  8.427708  7.964083
# 24 1998-04-01    8    7.266667 65.25125 12.913125 11.680417
# 25 1998-04-02    7    7.009167 58.82250 11.358958 11.744167
# 26 1998-04-03   30    7.731250 62.49500 11.390833 11.390833
# 27 1998-04-04    0    9.638333 59.20542  4.692708  6.772167
# 28 1998-04-05    5    9.704583 88.29833  7.672500 10.526417
# 29 1998-04-06    1   11.494167 71.25459  6.270208  7.251417
# 30 1998-04-07    2   11.130417 78.07833  8.427708  7.964083
# 31 1998-04-08    2   11.390833 51.90042  8.427708  7.964083