我是新来的,在这里发布问题,并尝试遵循适当的礼仪,所以请帮助我从我的问题中的任何遗漏或错误中吸取教训。
我正在使用specgram来分析声学信号,并对结果的两个方面感到困惑。
在bin数组中最后一个值的时间点放置了谱图的结尾,该数据应该位于最后一个bin的中间。我希望情节以最后一个bin的 end 的值结束。
作为时间轴返回的bin-center值看起来与Matlab中的bin中心值不一致,但是我的试验中可能存在不同的参数设置。
这些问题出现在一个Matplotlib示例中,来自:http://matplotlib.org/1.4.0/examples/pylab_examples/specgram_demo.html
bin值为:0.256,0.768,1.28 ...... ..19.2,19.712。
最明显的问题是频谱图的结尾为19.712,而不是预期值20.0。
任何人都可以帮忙澄清一下吗?这些问题中的任何一个似乎都代表了一个错误吗?或者我做错了什么?
这与此问题有关:How to make specgram fill entire figure area with matplotlib?
提前感谢您提供的任何指导。
答案 0 :(得分:0)
是的,情节确实在最后一个垃圾箱的中间结束。这可能不正确。
然而,无论如何,由于两个原因,它不会是2.0。
首先,端点很少与最后一个样本完全匹配,因为它被划分为NFFT
- 长度段,重叠为noverlap
,这不太可能完全适合长度信号,除非你非常仔细地选择信号长度,段长度和重叠。
即便如此,它也永远不会转到20.0,因为与其他python范围一样,numpy arange
会排除最后一个值。所以t.max()
是20.0-dt
,即19.9995。同样,这只是与MATLAB使用的不同的约定。
使用MATLAB 2014b和谱图功能,我使用与matplotlib示例相同的参数运行它,确保考虑范围的终点。我得到与matplotlib相同的时间点。
答案 1 :(得分:0)
请查看:Cutting of unused frequencies in specgram matplotlib
以上版本的上述版本用不同的参数说明了它们的影响:
from pylab import * from matplotlib import * # 100, 200, and 400 Hz sine 'wave' # Using more sample points dt = 0.00005 t = arange(0.0, 20.000, dt) s1 = sin(2*pi*100*t) s2 = 2*sin(2*pi*400*t) s3 = 2*sin(2*pi*200*t)# create a transient "chirp" mask = where(logical_and(t>10, t<12), 1.0, 0.0) s2 = s2 * mask # add some noise into the mix nse = 0.01*randn(len(t)) x = s1 + s2 + +s3 + nse # the signal #x = s1 + s2 + nse # the signal # Longer window NFFT = 2048 # the length of the windowing segments Fs = int(1.0/dt) # the sampling frequency # modified specgram() def my_specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, minfreq = None, maxfreq = None, **kwargs): """ call signature:: specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, minfreq = None, maxfreq = None, **kwargs) Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the y extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. *cmap*: A :class:`matplotlib.cm.Colormap` instance; if *None* use default determined by rc *xextent*: The image extent along the x-axis. xextent = (xmin,xmax) The default is (0,max(bins)), where bins is the return value from :func:`mlab.specgram` *minfreq, maxfreq* Limits y-axis. Both required *kwargs*: Additional kwargs are passed on to imshow which makes the specgram image Return value is (*Pxx*, *freqs*, *bins*, *im*): - *bins* are the time points the spectrogram is calculated over - *freqs* is an array of frequencies - *Pxx* is a len(times) x len(freqs) array of power - *im* is a :class:`matplotlib.image.AxesImage` instance Note: If *x* is real (i.e. non-complex), only the positive spectrum is shown. If *x* is complex, both positive and negative parts of the spectrum are shown. This can be overridden using the *sides* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/specgram_demo.py """ ##################################### # modified axes.specgram() to limit # the frequencies plotted ##################################### # this will fail if there isn't a current axis in the global scope ax = gca() Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) # modified here ##################################### if minfreq is not None and maxfreq is not None: Pxx = Pxx[(freqs >= minfreq) & (freqs <= maxfreq)] freqs = freqs[(freqs >= minfreq) & (freqs <= maxfreq)] ##################################### Z = 10. * np.log10(Pxx) Z = np.flipud(Z) if xextent is None: xextent = 0, np.amax(bins) xmin, xmax = xextent freqs += Fc extent = xmin, xmax, freqs[0], freqs[-1] im = ax.imshow(Z, cmap, extent=extent, **kwargs) ax.axis('auto') return Pxx, freqs, bins, im # plot ax1 = subplot(211) plot(t, x) subplot(212, sharex=ax1) # Windowing+greater overlap + limiting bandwidth to plot: # the minfreq and maxfreq args will limit the frequencies Pxx, freqs, bins, im = my_specgram(x, NFFT=NFFT, Fs=Fs, noverlap=2000, window=numpy.kaiser(NFFT,1.0), cmap=cm.gist_heat, minfreq = 0, maxfreq = 1000) show() close()