我有一个与sklearn api兼容的估算器。我试图将此估算器的一个参数与gridsearchcv
拟合,但我不明白该怎么做。
这是我的代码:
import numpy as np
import sklearn as sk
from sklearn.linear_model import LinearRegression, LassoLarsCV, RidgeCV
from sklearn.linear_model.base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator
class ELM(BaseEstimator):
def __init__(self, n_nodes, link='rbf', output_function='lasso', n_jobs=1, c=1):
self.n_jobs = n_jobs
self.n_nodes = n_nodes
self.c = c
if link == 'rbf':
self.link = lambda z: np.exp(-z*z)
elif link == 'sig':
self.link = lambda z: 1./(1 + np.exp(-z))
elif link == 'id':
self.link = lambda z: z
else:
self.link = link
if output_function == 'lasso':
self.output_function = LassoLarsCV(cv=10, n_jobs=self.n_jobs)
elif output_function == 'lr':
self.output_function = LinearRegression(n_jobs=self.n_jobs)
elif output_function == 'ridge':
self.output_function = RidgeCV(cv=10)
else:
self.output_function = output_function
return
def H(self, x):
n, p = x.shape
xw = np.dot(x, self.w.T)
xw = xw + np.ones((n, 1)).dot(self.b.T)
return self.link(xw)
def fit(self, x, y, w=None):
n, p = x.shape
self.mean_y = y.mean()
if w == None:
self.w = np.random.uniform(-self.c, self.c, (self.n_nodes, p))
else:
self.w = w
self.b = np.random.uniform(-self.c, self.c, (self.n_nodes, 1))
self.h_train = self.H(x)
self.output_function.fit(self.h_train, y)
return self
def predict(self, x):
self.h_predict = self.H(x)
return self.output_function.predict(self.h_predict)
def get_params(self, deep=True):
return {"n_nodes": self.n_nodes,
"link": self.link,
"output_function": self.output_function,
"n_jobs": self.n_jobs,
"c": self.c}
def set_params(self, **parameters):
for parameter, value in parameters.items():
setattr(self, parameter, value)
### Fit the c parameter ###
X = np.random.normal(0, 1, (100,5))
y = X[:,1] * X[:,2] + np.random.normal(0, .1, 100)
gs = sk.grid_search.GridSearchCV(ELM(n_nodes=20, output_function='lr'),
cv=5,
param_grid={"c":np.linspace(0.0001,1,10)},
fit_params={})
#gs.fit(X, y) # Error
答案 0 :(得分:4)
您的代码中存在两个问题:
您没有为scoring
指定GridSearchCV
参数。您似乎正在进行回归,因此mean_squared_error
是一个选项。
您的set_params
没有返回对象本身的引用。您应该在return self
循环后添加for
。
正如安德烈亚斯已经提到的,你很少需要在scikit-learn中重新定义set_params
和get_params
。只是继承了BaseEstimator
就足够了。
答案 1 :(得分:3)
您从BaseEstimator继承。它应该工作。见http://scikit-learn.org/dev/developers/index.html#rolling-your-own-estimator
仅供参考,您可能会感兴趣:https://github.com/scikit-learn/scikit-learn/pull/3306