如何在sklearn中使用GridSearchCV和自定义估算器?

时间:2015-04-01 14:39:34

标签: python machine-learning scikit-learn

我有一个与sklearn api兼容的估算器。我试图将此估算器的一个参数与gridsearchcv拟合,但我不明白该怎么做。

这是我的代码:

import numpy as np
import sklearn as sk

from sklearn.linear_model import LinearRegression, LassoLarsCV, RidgeCV
from sklearn.linear_model.base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator


class ELM(BaseEstimator):

    def __init__(self, n_nodes, link='rbf', output_function='lasso', n_jobs=1, c=1):
        self.n_jobs = n_jobs
        self.n_nodes = n_nodes
        self.c = c

        if link == 'rbf':
            self.link = lambda z: np.exp(-z*z)
        elif link == 'sig':
            self.link = lambda z: 1./(1 + np.exp(-z)) 
        elif link == 'id':
            self.link = lambda z: z
        else:
            self.link = link

        if output_function == 'lasso':
            self.output_function = LassoLarsCV(cv=10, n_jobs=self.n_jobs)
        elif output_function == 'lr':
            self.output_function = LinearRegression(n_jobs=self.n_jobs)

        elif output_function == 'ridge':
            self.output_function = RidgeCV(cv=10)

        else:
            self.output_function = output_function

        return 


    def H(self, x):

        n, p = x.shape
        xw = np.dot(x, self.w.T)
        xw = xw + np.ones((n, 1)).dot(self.b.T)
        return self.link(xw)

    def fit(self, x, y, w=None):

        n, p = x.shape
        self.mean_y = y.mean()
        if w == None:
            self.w = np.random.uniform(-self.c, self.c, (self.n_nodes, p))
        else:
            self.w = w

        self.b = np.random.uniform(-self.c, self.c, (self.n_nodes, 1))
        self.h_train = self.H(x)
        self.output_function.fit(self.h_train, y)

        return self

    def predict(self, x):
        self.h_predict = self.H(x)
        return self.output_function.predict(self.h_predict)

    def get_params(self, deep=True):
        return {"n_nodes": self.n_nodes, 
                "link": self.link,
                "output_function": self.output_function,
                "n_jobs": self.n_jobs, 
                "c": self.c}

    def set_params(self, **parameters):
        for parameter, value in parameters.items():
            setattr(self, parameter, value)



### Fit the c parameter ### 
X = np.random.normal(0, 1, (100,5))
y = X[:,1] * X[:,2] + np.random.normal(0, .1, 100) 

gs = sk.grid_search.GridSearchCV(ELM(n_nodes=20, output_function='lr'), 
                                 cv=5, 
                                 param_grid={"c":np.linspace(0.0001,1,10)},
                                 fit_params={})

#gs.fit(X, y) # Error

2 个答案:

答案 0 :(得分:4)

您的代码中存在两个问题:

  1. 您没有为scoring指定GridSearchCV参数。您似乎正在进行回归,因此mean_squared_error是一个选项。

  2. 您的set_params没有返回对象本身的引用。您应该在return self循环后添加for

    正如安德烈亚斯已经提到的,你很少需要在scikit-learn中重新定义set_paramsget_params。只是继承了BaseEstimator就足够了。

答案 1 :(得分:3)

您从BaseEstimator继承。它应该工作。见http://scikit-learn.org/dev/developers/index.html#rolling-your-own-estimator

仅供参考,您可能会感兴趣:https://github.com/scikit-learn/scikit-learn/pull/3306