如何收集spark sql输出到文件?

时间:2015-03-29 13:09:40

标签: scala apache-spark apache-spark-sql

下面是我的spark sql脚本,它加载文件并在其上使用SQL,我想收集sql查询的输出并将其写入文件,不知道如何能有人帮助。

   //import classes for sql
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// createSchemaRDD is used to implicitly convert an RDD to a SchemaRDD.
import sqlContext.createSchemaRDD


//hdfs paths
val warehouse="hdfs://quickstart.cloudera/user/hive/warehouse/"
val customers_path=warehouse+"people/people.txt"
customers_path

//create rdd file called file
val file=sc.textFile(customers_path)

val schemaString="name age"

import org.apache.spark.sql._



val schema =
  StructType(
    schemaString.split(",").map(fieldName => StructField(fieldName, StringType, true)))

val rowRDD=file.map(_.split(",")).map(p => Row(p(0),p(1).trim))

val peopleSchemRDD=sqlContext.applySchema(rowRDD, schema)

// Register the SchemaRDD as a table.
peopleSchemRDD.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
sqlContext.sql("select count(*) from people").collect().foreach(println)
System.exit(0)

3 个答案:

答案 0 :(得分:4)

如果您只想计算HDFS上大文件中的行数并将其写入另一个文件:

import java.nio.file.{ Files, Paths }
val path = "hdfs://quickstart.cloudera/user/hive/warehouse/people/people.txt"
val rdd = sc.textFile(path)
val linesCount = rdd.count
Files.write(Paths.get("line_count.txt"), linesCount.toString.getBytes)

答案 1 :(得分:0)



//import classes for sql
import sqlContext.implicits._
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// createSchemaRDD is used to implicitly convert an RDD to a SchemaRDD.
import sqlContext.createSchemaRDD
import sqlContext.implicits._

//hdfs paths
val warehouse="hdfs://quickstart.cloudera/user/hive/warehouse/"
val customers_path=warehouse+"people/people.txt"
customers_path

//create rdd file called file
val file=sc.textFile(customers_path)

val schemaString="name age"

import org.apache.spark.sql._



val schema =
  StructType(
    schemaString.split(",").map(fieldName => StructField(fieldName, StringType, true)))

val rowRDD=file.map(_.split(",")).map(p => Row(p(0),p(1).trim))

val peopleSchemRDD=sqlContext.applySchema(rowRDD, schema)

// Register the SchemaRDD as a table.
peopleSchemRDD.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
val op=sqlContext.sql("select count(*) from people")
val c=op.collect()
val rdd=sc.parallelize(c)
rdd.saveAsTextFile("/home/cloudera/op")
System.exit(0)




答案 2 :(得分:0)

peopleSchemaRDD.registerTempTable("people")
val op=sqlContext.sql("select * from people").count().toString
val pw=new PrintWriter(new File("path"))
pw.write("count of people:"+op+"\n")
pw.close()

创建一个名为people的临时表,然后编写查询以获取所需的输出和计数函数,该函数对后来输出转换为tostring的行数进行计数。 使用打印编写器调用对象op中的此存储值,将其写入文本文件。 如果“人员”列包含重复值,则可以使用distinct关键字来区分sql查询中的唯一值。