这个问题出现在练习赛中:
计算 N 三角形数字,它也是一个平方数,模数为10006699. (1≤N≤10^ 18)最多有10 ^ 5个测试例。
我发现我可以用递归关系 T i = 6T i-1 - T i-2 + 2 ,其中 T 0 = 0 且 T 1 = 1 。
我使用矩阵求幂来表示每个测试用例的大约O(log N)性能,但它显然太慢了,因为有10 ^ 5个测试用例。事实上,即使约束只是(1≤N≤10^ 6),这段代码太慢了,我只能进行O(N)预处理和O(1)查询。 / p>
我应该改变我对问题的处理方法,还是应该优化代码的某些部分?
#include <ios>
#include <iostream>
#include <vector>
#define MOD 10006699
/*
Transformation Matrix:
0 1 0 t[i] t[i+1]
-1 6 1 * t[i+1] = t[i+2]
0 0 1 2 2
*/
std::vector<std::vector<long long int> > multi(std::vector<std::vector<long long int> > a, std::vector<std::vector<long long int> > b)
{
std::vector<std::vector<long long int> > c(3, std::vector<long long int>(3));
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
for (int k = 0; k < 3; k++)
{
c[i][j] += (a[i][k] * b[k][j]) % MOD;
c[i][j] %= MOD;
}
}
}
return c;
}
std::vector<std::vector<long long int> > power(std::vector<std::vector<long long int> > vec, long long int p)
{
if (p == 1) return vec;
else if (p % 2 == 1) return multi(vec, power(vec, p-1));
else
{
std::vector<std::vector<long long int> > x = power(vec, p/2);
return multi(x, x);
}
}
int main()
{
std::ios_base::sync_with_stdio(false);
long long int n;
while (std::cin >> n)
{
if (n == 0) break;
else
{
std::vector<std::vector<long long int> > trans;
long long int ans;
trans.resize(3);
trans[0].push_back(0);
trans[0].push_back(1);
trans[0].push_back(0);
trans[1].push_back(-1);
trans[1].push_back(6);
trans[1].push_back(1);
trans[2].push_back(0);
trans[2].push_back(0);
trans[2].push_back(1);
trans = power(trans, n);
ans = (trans[0][1]%MOD + (2*trans[0][2])%MOD)%MOD;
if (ans < 0) ans += MOD;
std::cout << ans << std::endl;
}
}
}
答案 0 :(得分:1)
注意:我删除了旧答案,这更有用
对于问题,您似乎不可能为O(log N)创建更好的渐近算法。但是,可以对当前代码进行修改,这不会改善渐近时间但会提高性能
以下是对代码的修改,它产生相同的答案:
#include <ctime>
#include <ios>
#include <iostream>
#include <vector>
#define MOD 10006699
void power(std::vector<std::vector<long long int> >& vec, long long int p)
{
if (p == 1)
return;
else if (p & 1)
{
std::vector<std::vector<long long int> > copy1 = vec;
power(copy1, p-1);
std::vector<std::vector<long long int> > copy2(3, std::vector<long long int>(3));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
{
for (int k = 0; k < 3; k++)
copy2[i][j] += (vec[i][k] * copy1[k][j]) % MOD;
copy2[i][j] %= MOD;
}
vec = copy2;
return;
}
else
{
power(vec, p/2);
std::vector<std::vector<long long int> > copy(3, std::vector<long long int>(3));
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
{
for (int k = 0; k < 3; k++)
copy[i][j] += (vec[i][k] * vec[k][j]) % MOD;
copy[i][j] %= MOD;
}
vec = copy;
return;
}
}
int main()
{
std::ios_base::sync_with_stdio(false);
long long int n;
while (std::cin >> n)
{
std::clock_t start = std::clock();
if (n == 0) break;
std::vector<std::vector<long long int> > trans;
long long int ans;
trans.resize(3);
trans[0].push_back(0);
trans[0].push_back(1);
trans[0].push_back(0);
trans[1].push_back(-1);
trans[1].push_back(6);
trans[1].push_back(1);
trans[2].push_back(0);
trans[2].push_back(0);
trans[2].push_back(1);
power(trans, n);
ans = (trans[0][1]%MOD + (2*trans[0][2])%MOD)%MOD;
if (ans < 0) ans += MOD;
std::cout << "Answer: " << ans << std::endl;
std::cout << "Time: " << (std::clock() - start) / (double)(CLOCKS_PER_SEC / 1000) << " ms" << std::endl;
}
}
差异主要是:
c[i][j] %= MOD;
的代码动作超出k
循环如果我在main
的while循环中放置相同的计时代码,就像我在代码中一样,将文件命名为#34; before.cpp&#34;,将我的文件命名为&#34;之后.cpp&#34;,并连续运行10次并进行全面优化,然后这些是我的结果:
Alexanders-MBP:Desktop alexandersimes$ g++ before.cpp -O3 -o before
Alexanders-MBP:Desktop alexandersimes$ ./before
1000000000000000000
Answer: 6635296
Time: 0.708 ms
1000000000000000000
Answer: 6635296
Time: 0.542 ms
1000000000000000000
Answer: 6635296
Time: 0.688 ms
1000000000000000000
Answer: 6635296
Time: 0.634 ms
1000000000000000000
Answer: 6635296
Time: 0.626 ms
1000000000000000000
Answer: 6635296
Time: 0.629 ms
1000000000000000000
Answer: 6635296
Time: 0.629 ms
1000000000000000000
Answer: 6635296
Time: 0.629 ms
1000000000000000000
Answer: 6635296
Time: 0.632 ms
1000000000000000000
Answer: 6635296
Time: 0.695 ms
Alexanders-MBP:Desktop alexandersimes$ g++ after.cpp -O3 -o after
Alexanders-MBP:Desktop alexandersimes$ ./after
1000000000000000000
Answer: 6635296
Time: 0.283 ms
1000000000000000000
Answer: 6635296
Time: 0.287 ms
1000000000000000000
Answer: 6635296
Time: 0.27 ms
1000000000000000000
Answer: 6635296
Time: 0.27 ms
1000000000000000000
Answer: 6635296
Time: 0.266 ms
1000000000000000000
Answer: 6635296
Time: 0.265 ms
1000000000000000000
Answer: 6635296
Time: 0.266 ms
1000000000000000000
Answer: 6635296
Time: 0.267 ms
1000000000000000000
Answer: 6635296
Time: 0.21 ms
1000000000000000000
Answer: 6635296
Time: 0.208 ms