根据"Test-Only Development" with the Z3 Theorem Prover,我尝试在SMT-LIB中编码Project Euler problem 4并使用Z3解决它。
问题是找到两个三位数字的最大回文整数乘积。解决方案是993 * 913 = 906609
。
在下面的代码中,我只能编码两个三位数的数字应该是回文。这会产生604406
的正确值,但不是最大值。
如何更改代码以便找到906609
的最大值?
我已尝试使用(maximize (* p q))
,但报告错误,说Objective function '(* p q)' is not supported
。我可以调整a
的范围,但我正在寻找一种方法让Z3为我做这件事。
到目前为止我所拥有的是:
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const p Int)
(declare-const q Int)
(declare-const pq Int)
(define-fun satisfy ((pq Int)) Bool
(and
(<= 1 a 9)
(<= 0 b 9)
(<= 0 c 9)
(<= 100 p 999)
(<= p q 999)
(= pq
(* p q)
(+ (* 100001 a)
(* 10010 b)
(* 1100 c)))))
(assert (satisfy pq))
; Does not work:
;(maximize (* p q))
(check-sat)
(get-model)
使用z3 -smt2 e4.smt2
as-is运行此操作会产生:
sat
(model
(define-fun q () Int
913)
(define-fun p () Int
662)
(define-fun c () Int
4)
(define-fun b () Int
0)
(define-fun a () Int
6)
(define-fun pq () Int
604406)
)
答案 0 :(得分:1)
一种可能的解决方案是
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const p Int)
(declare-const q Int)
(declare-const pq Int)
(define-fun satisfy ((pq Int)) Bool
(and
(<= 1 a 9)
(<= 0 b 9)
(<= 0 c 9)
(<= 100 p 999)
(<= p q 999)
(= pq
(* p q)
(+ (* 100001 a)
(* 10010 b)
(* 1100 c)))))
(assert (satisfy pq))
(assert (> pq 888888))
(check-sat)
(get-model)
,相应的输出是
sat
(model
(define-fun pq () Int 906609)
(define-fun q () Int 993)
(define-fun p () Int 913)
(define-fun c () Int 6)
(define-fun b () Int 0)
(define-fun a () Int 9) )
请在线运行此代码here。
答案 1 :(得分:1)
其他可能的解决方案:我们搜索的数字efggfe
是数字9ab
和9cd
的乘积。使用代码
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const d Int)
(declare-const e Int)
(declare-const f Int)
(declare-const g Int)
(assert (and (>= a 0) (<= a 9)))
(assert (and (>= b 0) (<= b 9)))
(assert (and (>= c 0) (<= c 9)))
(assert (and (>= d 0) (<= d 9)))
(assert (and (>= e 0) (<= e 9)))
(assert (and (>= f 0) (<= f 9)))
(assert (and (>= g 0) (<= g 9)))
(assert (= (* (+ 900 (* 10 a) b) (+ 900 (* 10 c) d))
(+ (* 100000 e) (* 10000 f) (* 1000 g) (* 100 g) (* 10 f) e)))
(check-sat)
(get-model)
我们获得输出
sat
(model
(define-fun g () Int 6)
(define-fun f () Int 0)
(define-fun e () Int 9)
(define-fun d () Int 3)
(define-fun c () Int 1)
(define-fun b () Int 3)
(define-fun a () Int 9) )
对应于数字906609
。
请在线运行此代码here。
要验证906609
是否为最大值,我们运行以下代码
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const d Int)
(declare-const e Int)
(declare-const f Int)
(declare-const g Int)
(assert (and (>= a 0) (<= a 9)))
(assert (and (>= b 0) (<= b 9)))
(assert (and (>= c 0) (<= c 9)))
(assert (and (>= d 0) (<= d 9)))
(assert (and (>= e 0) (<= e 9)))
(assert (and (>= f 0) (<= f 9)))
(assert (and (>= g 0) (<= g 9)))
(assert (= (* (+ 900 (* 10 a) b) (+ 900 (* 10 c) d))
(+ (* 100000 e) (* 10000 f) (* 1000 g) (* 100 g) (* 10 f) e) ) )
(assert (> (+ (* 100000 e) (* 10000 f) (* 1000 g) (* 100 g) (* 10 f) e) 906609))
(check-sat)
,相应的输出是
unsat
请运行最后一个代码here