Pandas DataFrames如何看起来相同但是失败等于()?

时间:2015-03-27 23:13:26

标签: python pandas

为了确认我理解Pandas df.groupby()df.reset_index()做了什么,我尝试从数据框到相同数据的分组版本往返。在往返之后,必须再次对列和行进行排序,因为groupby()影响行顺序而reset_index()影响列顺序,但经过两次快速操作以使列和索引按顺序排列后,数据框看起来完全相同:

  • 相同的列名列表。
  • 每列都有相同的dtypes。
  • 相应的索引值严格相等。
  • 相应的数据值严格相等。

然而,在所有这些检查成功后,df1.equals(df5)会返回惊人的值False

这些数据框之间有什么区别equals()发现我还没弄明白如何检查自己?

测试代码:

csv_text = """\
Title,Year,Director
North by Northwest,1959,Alfred Hitchcock
Notorious,1946,Alfred Hitchcock
The Philadelphia Story,1940,George Cukor
To Catch a Thief,1955,Alfred Hitchcock
His Girl Friday,1940,Howard Hawks
"""

import pandas as pd

df1 = pd.read_csv('sample.csv')
df1.columns = map(str.lower, df1.columns)
print(df1)

df2 = df1.groupby(['director', df1.index]).first()
df3 = df2.reset_index('director')
df4 = df3[['title', 'year', 'director']]
df5 = df4.sort_index()
print(df5)

print()
print(repr(df1.columns))
print(repr(df5.columns))
print()
print(df1.dtypes)
print(df5.dtypes)
print()
print(df1 == df5)
print()
print(df1.index == df5.index)
print()
print(df1.equals(df5))

运行脚本时收到的输出是:

                    title  year          director
0      North by Northwest  1959  Alfred Hitchcock
1               Notorious  1946  Alfred Hitchcock
2  The Philadelphia Story  1940      George Cukor
3        To Catch a Thief  1955  Alfred Hitchcock
4         His Girl Friday  1940      Howard Hawks
                    title  year          director
0      North by Northwest  1959  Alfred Hitchcock
1               Notorious  1946  Alfred Hitchcock
2  The Philadelphia Story  1940      George Cukor
3        To Catch a Thief  1955  Alfred Hitchcock
4         His Girl Friday  1940      Howard Hawks

Index(['title', 'year', 'director'], dtype='object')
Index(['title', 'year', 'director'], dtype='object')

title       object
year         int64
director    object
dtype: object
title       object
year         int64
director    object
dtype: object

  title  year director
0  True  True     True
1  True  True     True
2  True  True     True
3  True  True     True
4  True  True     True

[ True  True  True  True  True]

False

感谢您的帮助!

1 个答案:

答案 0 :(得分:5)

这对我来说感觉像个错误,但可能只是因为我误解了某些东西。这些块按不同的顺序列出:

>>> df1._data
BlockManager
Items: Index(['title', 'year', 'director'], dtype='object')
Axis 1: Int64Index([0, 1, 2, 3, 4], dtype='int64')
IntBlock: slice(1, 2, 1), 1 x 5, dtype: int64
ObjectBlock: slice(0, 4, 2), 2 x 5, dtype: object
>>> df5._data
BlockManager
Items: Index(['title', 'year', 'director'], dtype='object')
Axis 1: Int64Index([0, 1, 2, 3, 4], dtype='int64')
ObjectBlock: slice(0, 4, 2), 2 x 5, dtype: object
IntBlock: slice(1, 2, 1), 1 x 5, dtype: int64

core/internals.py中,我们有BlockManager方法

def equals(self, other):
    self_axes, other_axes = self.axes, other.axes
    if len(self_axes) != len(other_axes):
        return False
    if not all (ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)):
        return False
    self._consolidate_inplace()
    other._consolidate_inplace()
    return all(block.equals(oblock) for block, oblock in
               zip(self.blocks, other.blocks))

并且最后all假设selfother中的块对应。但是如果我们在它之前添加一些print次调用,我们会看到:

>>> df1.equals(df5)
blocks self: (IntBlock: slice(1, 2, 1), 1 x 5, dtype: int64, ObjectBlock: slice(0, 4, 2), 2 x 5, dtype: object)
blocks other: (ObjectBlock: slice(0, 4, 2), 2 x 5, dtype: object, IntBlock: slice(1, 2, 1), 1 x 5, dtype: int64)
False

因此我们正在比较错误的事情。我不确定这是否是一个错误的原因是因为我不确定equals是否意味着是不是这个挑剔。如果是这样,我认为至少存在一个doc bug,因为equals应该大声说它并不意味着用于你可能认为的名称和文档字符串。