我有以下数据框:
import pandas as pd
df = pd.DataFrame({'AAA' : ['w','x','y','z'], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]})
看起来像这样:
In [32]: df
Out[32]:
AAA BBB CCC
0 w 10 100
1 x 20 50
2 y 30 -30
3 z 40 -50
我想要做的是对除了具有非数值的那些列(在这种情况下为AAA
)之外的每一列执行函数操作。在实际情况下,非数字情况总是在第一列,其余(可能大于2列)总是数字。
最终所需的输出是:
AAA BBB CCC Score
0 w 10 100 110
1 x 20 50 70
2 y 30 -30 0
3 z 40 -50 -10
我尝试了但失败了:
import numpy as np
df["Score"] = df.apply(np.sum, axis=1)
这样做的正确方法是什么?
UPDATE2:
这是给SettingWithCopyWarning
的代码。
请重新开始ipython测试。
import pandas as pd
import numpy as np
def cvscore(fclist):
sd = np.std(fclist)
mean = np.mean(fclist)
cv = sd/mean
return cv
def calc_cvscore_on_df(df):
df["CV"] = df.iloc[:,1:].apply(cvscore, axis=1)
return df
df3 = pd.DataFrame(np.random.randn(1000, 3), columns=['a', 'b', 'c'])
calc_cvscore_on_df(df3[["a","b"]])
答案 0 :(得分:11)
要选择除第一列以外的所有内容,您可以使用df.iloc[:, 1:]
:
In [371]: df['Score'] = df.iloc[:, 1:].sum(axis=1)
In [372]: df
Out[372]:
AAA BBB CCC Score
0 w 10 100 110
1 x 20 50 70
2 y 30 -30 0
3 z 40 -50 -10
将任意函数func
应用于每一行:
df.iloc[:, 1:].apply(func, axis=1)
例如,
import numpy as np
import pandas as pd
def cvscore(fclist):
sd = np.std(fclist)
mean = np.mean(fclist)
cv = sd/mean
return cv
df = pd.DataFrame({'AAA' : ['w','x','y','z'], 'BBB' : [10,20,30,40],
'CCC' : [100,50,-30,-50]})
df['Score'] = df.iloc[:, 1:].apply(cvscore, axis=1)
print(df)
产量
AAA BBB CCC Score
0 w 10 100 1.211386
1 x 20 50 0.868377
2 y 30 -30 NaN
3 z 40 -50 -5.809058