大家:
我正在PyLucene 4.9.0中开发自己的Analyzer,并在分析器中为CompoundTokenFilter创建了一个TokenFilter,因为DictionaryCompoundTokenFilter表现不佳。
DictionaryCompoundTokenFilter使用粗暴算法,但是我只想在复合词中的子词都在词典中时分割复合词,就像“乳腺癌”和“癌症”都在给词典。
但是在运行程序时,它显示“CharTermAttribute”对象的“属性'长度'不可读”,我找不到它的错误。 谢谢!
from __future__ import division
import lucene, math, itertools
from java.lang import CharSequence
from java.io import IOException
from java.util import LinkedList
from org.apache.pylucene.analysis import PythonTokenStream
from org.apache.lucene.analysis import TokenFilter
from org.apache.pylucene.analysis import PythonTokenFilter
from org.apache.lucene.analysis import TokenStream
from org.apache.lucene.analysis.tokenattributes import CharTermAttribute
from org.apache.lucene.analysis.tokenattributes import OffsetAttribute
from org.apache.lucene.analysis.tokenattributes import PositionIncrementAttribute
from org.apache.lucene.analysis.util import CharArraySet
from org.apache.lucene.util import AttributeSource
from org.apache.lucene.util import Version
class CompoundTokenFilter(PythonTokenFilter):
def __init__(self,matchVersion,input,dictionary,DEFAULT_MIN_WORD_SIZE,DEFAULT_MIN_SUBWORD_SIZE,DEFAULT_MAX_SUBWORD_SIZE):
super(CompoundTokenFilter,self).__init__(input)
self.matchVersion=matchVersion
self.dictionary=dictionary
self.tokens=LinkedList()
self.minWordSize=DEFAULT_MIN_WORD_SIZE
self.minSubwordSize=DEFAULT_MIN_SUBWORD_SIZE
self.maxSubwordSize=DEFAULT_MAX_SUBWORD_SIZE
self.current=AttributeSource.State
self.termAtt=input.addAttribute(CharTermAttribute.class_)
self.offsetAtt=input.addAttribute(OffsetAttribute.class_)
self.posIncAtt=input.addAttribute(PositionIncrementAttribute.class_)
self.input=input
def decompose(self):
l=self.termAtt.length()
s=self.termAtt.subSequence(0,l)
if s in self.dictionary:
self.tokens.add(CompoundToken(self.matchVersion,self.input,self.dictionary,self.minWordSize,self.minSubwordSize,self.maxSubwordSize,0,l))
else:
d=filter(lambda x:len(x)>=self.minSubwordSize and len(x)<=self.maxSubwordSize in s,this.dictionary)
if len(d)>0:
start=int(math.floor(l/self.maxSubwordSize))
end=int(math.ceil(l/self.minSubwordSize))
subwords_combinations=[]
for i in xrange(start,end+1):
subwords_combinations.extend(itertools.permutations(d,i))
subwords_combinations=filter(lambda x:''.join(x)==s,subwords_combinations)
subwords=sorted(set(reduce(lambda x,y:x+y,subwords_combinations)),key=lambda x:-1*len(x))
for subword in subwords:
tokens.add(CompoundToken(self.matchVersion,self.input,self.dictionary,self.minWordSize,self.minSubwordSize,self.maxSubwordSize,s.find(subword),s.find(subword)+len(subword)))
def incrementToken(self):
if (not self.tokens.isEmpty()):
assert self.current!=None
token=self.tokens.removeFirst()
AttributeSource.restoreState(self.current)
self.termAtt.setEmpty().append(token.txt)
self.offsetAttribute.setOffset(token.startOffset, token.endOffset)
self.posIncAtt.setPositionIncrement(0)
return True
self.current=None
if(self.input.incrementToken()):
if self.termAtt.length()>=self.minWordSize:
decompose()
if not tokens.isEmpty():
self.current=AttributeSource.captureState()
return True
else:
return False
def reset(self):
super(CompoundTokenFilter,self).reset()
self.tokens.clear()
self.current=None
class CompoundToken:
def __init__(self,matchVersion,input,dictionary,DEFAULT_MIN_WORD_SIZE,DEFAULT_MIN_SUBWORD_SIZE,DEFAULT_MAX_SUBWORD_SIZE,offset,length):
compoundTokenFilter=CompoundTokenFilter(matchVersion,input,dictionary,DEFAULT_MIN_WORD_SIZE,DEFAULT_MIN_SUBWORD_SIZE,DEFAULT_MAX_SUBWORD_SIZE)
self.txt=compoundTokenFilter.termAtt.subSequence(offset, offset + length)
startOff = compoundWordTokenFilterBase.this.offsetAtt.startOffset()
endOff = compoundWordTokenFilterBase.this.offsetAtt.endOffset()
if matchVersion.onOrAfter(Version.LUCENE_4_4) or endOff - startOff != compoundTokenFilter.termAtt.length():
self.startOffset = startOff
self.endOffset = endOff
else:
newStart = startOff + offset
self.startOffset = newStart
self.endOffset = newStart + length