我从varpart和RsquareAdj获得了不同的结果
> (allel_freq.varpar<-varpart(allel_freq.h,env.PCoA,PCNM.red))
Partition of variation in RDA
Call: varpart(Y = allel_freq.h, X = env.PCoA, PCNM.red)
Explanatory tables:
X1: env.PCoA
X2: PCNM.red
No. of explanatory tables: 2
Total variation (SS): 0.0017369
Variance: 0.00017369
No. of observations: 11
Partition table:
Df R.squared Adj.R.squared Testable
[a+b] = X1 2 0.23618 0.04522 TRUE
[b+c] = X2 2 0.54147 0.42683 TRUE
[a+b+c] = X1+X2 4 0.65547 0.42578 TRUE
Individual fractions
[a] = X1|X2 2 -0.00106 TRUE
[b] 0 0.04628 FALSE
[c] = X2|X1 2 0.38056 TRUE
[d] = Residuals 0.57422 FALSE
in&#34; varpart&#34;,env.PCoA的独特效果是-0.00106,但是当我使用&#34; RsquareAdj&#34;时,我得到了不同的调整后的R-square(-0.2266707)。奇怪。
> rda.envspe<-rda(allel_freq.h,env.PCoA,cbind(PCNM.red))
> RsquareAdj(rda.envspe)
$r.squared
[1] 0.1139976
$adj.r.squared
[1] -0.2266707