根据Hadoop - 权威指南中的wordcount示例,我开发了一个mapreduce工作来计算字符串无序元组的出现次数。输入看起来像这样(只是更大):
a b
c c
d d
b a a d
d d
运行mapreduce我希望输出(对于这个例子):
c c 1
d d 1
a b 2
a d 1
d d 1
这意味着,我希望元组a,b和b,a被认为是相同的。这里已经提出了这个问题:Hadoop MapReduce: Two values as key in Mapper-Reducer并且可能在这里解决了https://developer.yahoo.com/hadoop/tutorial/module5.html#keytypes。
对于大输入文件,我得到这样的输出,第一列是resp的hashCode。键:
151757761 a a 62822
153322274 a b 62516
154886787 a c 62248
156451300 a d 62495
153322274 b a 62334
154902916 b b 62232
158064200 b d 62759
154886787 c a 62200
156483558 c b 124966
158080329 c c 62347
159677100 d c 125047
156451300 d a 62653
158064200 d b 62603
161290000 d d 62778
可以看出,有些键是重复的,如a,b和b的153322274,a。对于其他人,例如c,b(和b,c)和c,d(和d,c),计数是正确的。因为测试数据是随机抽取的,所以数量大大超过其他数量。
我已经在一段时间内一直在寻找这个问题,现在已经没有想法,为什么在减少阶段之后仍然会有重复的重复。
以下是我使用的代码:
首先是我的自定义WritableComparable的代码
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableUtils;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.math.BigInteger;
public class Pair implements WritableComparable<Pair> {
private String first;
private String second;
public Pair(String first, String second) {
this.first = first;
this.second = second;
}
public Pair() {
this("", "");
}
@Override
public String toString() {
return this.hashCode() + "\t" + first + "\t" + second;
}
@Override
public void write(DataOutput out) throws IOException {
WritableUtils.writeString(out, first);
WritableUtils.writeString(out, second);
}
@Override
public void readFields(DataInput in) throws IOException {
first = WritableUtils.readString(in);
second = WritableUtils.readString(in);
}
@Override
public int hashCode() {
BigInteger bA = BigInteger.ZERO;
BigInteger bB = BigInteger.ZERO;
for(int i = 0; i < first.length(); i++) {
bA = bA.add(BigInteger.valueOf(127L).pow(i+1).multiply(BigInteger.valueOf(first.codePointAt(i))));
}
for(int i = 0; i < second.length(); i++) {
bB = bB.add(BigInteger.valueOf(127L).pow(i+1).multiply(BigInteger.valueOf(second.codePointAt(i))));
}
return bA.multiply(bB).intValue();
}
@Override
public boolean equals(Object o) {
if (o instanceof Pair) {
Pair other = (Pair) o;
boolean result = ( first.compareTo(other.first) == 0 && second.compareTo(other.second) == 0 )
|| ( first.compareTo(other.second) == 0 && second.compareTo(other.first) == 0 );
return result;
}
return false;
}
@Override
public int compareTo(Pair other) {
if (( first.compareTo(other.first) == 0 && second.compareTo(other.second) == 0 )
|| ( first.compareTo(other.second) == 0 && second.compareTo(other.first) == 0 ) ) {
return 0;
} else {
int cmp = first.compareTo( other.first );
if (cmp != 0) {
return cmp;
}
return second.compareTo( other.second );
}
}
}
其余的:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class PairCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: paircount <in-dir> <out-dir>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(PairCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(IntSumReducer.class);
job.setMapOutputKeyClass(Pair.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Pair.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
public static class TokenizerMapper extends Mapper<Object, Text, Pair, IntWritable> {
private final static IntWritable one = new IntWritable(1);
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
context.write(new Pair(itr.nextToken(), itr.nextToken()), one);
}
}
}
public static class IntSumReducer extends Reducer<Pair, IntWritable, Pair, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Pair key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write( key, result);
}
}
}
编辑:我为hashCode()和compareTo()函数添加了单元测试。他们工作得很好。
import org.junit.Test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotEquals;
import static org.junit.Assert.assertTrue;
public class Tests {
@Test
public void testPairComparison() {
assertTrue( 0 == new Pair("a", "a").compareTo(new Pair("a", "a")) );
assertTrue( 0 == new Pair("a", "b").compareTo(new Pair("b", "a")) );
assertTrue( 0 == new Pair("a", "c").compareTo(new Pair("c", "a")) );
assertTrue( 0 == new Pair("a", "d").compareTo(new Pair("d", "a")) );
assertTrue( 0 == new Pair("b", "b").compareTo(new Pair("b", "b")) );
assertTrue( 0 == new Pair("b", "c").compareTo(new Pair("c", "b")) );
assertTrue( 0 == new Pair("b", "d").compareTo(new Pair("d", "b")) );
assertTrue( 0 == new Pair("c", "c").compareTo(new Pair("c", "c")) );
assertTrue( 0 == new Pair("c", "d").compareTo(new Pair("d", "c")) );
assertTrue( 0 == new Pair("d", "d").compareTo(new Pair("d", "d")) );
assertTrue( 0 > new Pair("a", "a").compareTo(new Pair("b", "b")) );
assertTrue( 0 > new Pair("a", "a").compareTo(new Pair("c", "b")) );
assertTrue( 0 < new Pair("d", "d").compareTo(new Pair("c", "b")) );
assertTrue( 0 < new Pair("c", "d").compareTo(new Pair("c", "a")) );
}
@Test
public void testPairHashcode(){
assertTrue( 0 != new Pair("a", "a").hashCode());
assertTrue( 0 != new Pair("a", "b").hashCode());
assertTrue( 0 != new Pair("a", "c").hashCode());
assertTrue( 0 != new Pair("a", "d").hashCode());
assertTrue( 0 != new Pair("b", "b").hashCode());
assertTrue( 0 != new Pair("b", "c").hashCode());
assertTrue( 0 != new Pair("b", "d").hashCode());
assertTrue( 0 != new Pair("c", "c").hashCode());
assertTrue( 0 != new Pair("c", "d").hashCode());
assertTrue( 0 != new Pair("d", "d").hashCode());
assertEquals( new Pair("a", "a").hashCode(), new Pair("a", "a").hashCode() );
assertEquals( new Pair("a", "b").hashCode(), new Pair("b", "a").hashCode() );
assertEquals( new Pair("a", "c").hashCode(), new Pair("c", "a").hashCode() );
assertEquals( new Pair("a", "d").hashCode(), new Pair("d", "a").hashCode() );
assertEquals( new Pair("b", "b").hashCode(), new Pair("b", "b").hashCode() );
assertEquals( new Pair("b", "c").hashCode(), new Pair("c", "b").hashCode() );
assertEquals( new Pair("b", "d").hashCode(), new Pair("d", "b").hashCode() );
assertEquals( new Pair("c", "c").hashCode(), new Pair("c", "c").hashCode() );
assertEquals( new Pair("c", "d").hashCode(), new Pair("d", "c").hashCode() );
assertEquals( new Pair("d", "d").hashCode(), new Pair("d", "d").hashCode() );
assertNotEquals( new Pair("a", "a").hashCode(), new Pair("b", "b").hashCode() );
assertNotEquals( new Pair("a", "b").hashCode(), new Pair("b", "d").hashCode() );
assertNotEquals( new Pair("a", "c").hashCode(), new Pair("d", "a").hashCode() );
assertNotEquals( new Pair("a", "d").hashCode(), new Pair("a", "a").hashCode() );
}
}
但是我意识到,将compareTo()更改为始终返回0将导致每个对被认为相同导致输出:
156483558 c b 1000000
虽然将hashCode()更改为始终返回0(对于与上面相同的输入数据)将导致与上面相同的结果,只是键为零。
0 a a 62822
0 a b 62516
0 a c 62248
0 a d 62495
0 b a 62334
0 b b 62232
0 b d 62759
0 c a 62200
0 c b 124966
0 c c 62347
0 d c 125047
0 d a 62653
0 d b 62603
0 d d 62778
编辑:
我进一步调查,使compareTo()打印出比较的内容。这表明,像a,b和b,a这样的某些键永远不会相互比较,因此不能分组。
我想我遗失了一些微小的东西。 我很高兴有任何想法!非常感谢你提前。
最好的问候
答案 0 :(得分:1)
鉴于{a,b} =:= {b,a}的初始要求,在构造函数中排序元组元素会不容易?
public Pair(String first, String second) {
boolean swap = first.compareTo(second) > 0;
this.first = swap ? second : first;
this.second = swap ? first : second;
}
这将简化compareTo和equals等方法,并且不需要实现分区程序。
答案 1 :(得分:0)
我想我在这里看到了这个问题。您尚未实现分区程序。
当你说你遇到大数据集的问题时,我假设你正在使用多个reducer。如果您使用的是单个减速器,则代码将起作用。但是在多个减速器的情况下,你需要一个分区来告诉frameowrk ab&amp; amp; ba基本上是相同的键,应该使用相同的减速器。
以下是解释性链接:LINK
答案 2 :(得分:0)
问题出在compareTo()函数中。 首先检查a是否相等,b等于b,a。如果不是这种情况,首先要比较对的较小值,如果它们匹配,则比较resp的较大值。对。这解决了这个问题。
这就是我现在实现它的方式:
@Override
public int compareTo(Pair other){
int cmpFirstFirst = first.compareTo(other.first);
int cmpSecondSecond = second.compareTo(other.second);
int cmpFirstSecond = first.compareTo(other.second);
int cmpSecondFirst = second.compareTo(other.first);
if ( cmpFirstFirst == 0 && cmpSecondSecond == 0 || cmpFirstSecond == 0 && cmpSecondFirst == 0) {
return 0;
}
String thisSmaller;
String otherSmaller;
String thisBigger;
String otherBigger;
if ( this.first.compareTo(this.second) < 0 ) {
thisSmaller = this.first;
thisBigger = this.second;
} else {
thisSmaller = this.second;
thisBigger = this.first;
}
if ( other.first.compareTo(other.second) < 0 ) {
otherSmaller = other.first;
otherBigger = other.second;
} else {
otherSmaller = other.second;
otherBigger = other.first;
}
int cmpThisSmallerOtherSmaller = thisSmaller.compareTo(otherSmaller);
int cmpThisBiggerOtherBigger = thisBigger.compareTo(otherBigger);
if (cmpThisSmallerOtherSmaller == 0) {
return cmpThisBiggerOtherBigger;
} else {
return cmpThisSmallerOtherSmaller;
}
}
这意味着,与我的假设相反,地图输出的分组是使用传递关系而不是键的叉积来完成的。密钥的稳定顺序是必要的。一旦你了解并理解它,这就完全有道理。