我无法完成这项工作,所以我们将不胜感激。
短版本:考虑到立方体的中点和大小,我需要将其分成8个较小的(2x2x2),并且可能会重复每个。得到的坐标是唯一需要的。
我正在编写一些八叉树样式代码,并且我试图让它接受不同深度的输入(深度与点之间的间距有关,即2^depth
,例如深度0具有1个单位网格,深度-1具有0.5,深度1具有2)。我需要它能够获得更高深度的坐标,并将其分解为符合实际深度的立方体。
例如,如果我在深度1处有点(0,0,0)
,并且场景深度为0,我需要将其分成8个部分,然后移动每个+-0.5
单位以使其适合旧的立方体(2^(depth-1)
)。
如果场景深度为-1,我需要将其分成8块,然后将它们分成8块。我基本上需要它来提供8^(difference in depth)
结果,这听起来很容易,但它完全让我感到困惑。
#Set up structure
octreeRange = ( 1, -1 )
octreeStructure = set()
for x in octreeRange:
for y in octreeRange:
for z in octreeRange:
octreeStructure.add( ( x, y, z ) )
#octreeStructure is the 8 coordinates that a cube can split into
def recursiveCoordinate( coordinate, coordinateInfo, minDepthLevel, octreeStructure ):
newDictionary = {}
#Turn into list if isn't already list
if type( coordinateInfo ) != list:
coordinateInfo = [coordinateInfo,minDepthLevel]
coordinateDepth = coordinateInfo[1]
#Run function again for each coordinate that has a depth too high
if coordinateDepth > minDepthLevel:
coordinateInfo[1] -= 1
moveAmount = pow( 2, coordinateDepth-1 )
for i in octreeStructure:
newCoordinate = [i[j]*moveAmount+coordinate[j] for j in xrange( 3 )]
newDictionary.update( recursiveCoordinate( newCoordinate, coordinateInfo, minDepthLevel, octreeStructure ) )
else:
newDictionary[tuple( coordinate )] = coordinateInfo
return newDictionary
minDepthLevel = 0
grid = {}
#grid[(x, y, z)] = [block ID, depth level]
grid[(1.5,0,0)] = [1,2]
newGrid = {}
for coordinate in grid:
newGrid.update( recursiveCoordinate( coordinate, grid[coordinate], minDepthLevel, octreeStructure ) )
print len( newGrid.keys() )
对于视觉创意,请拍下此图片。当场景为0级时,中点位于中间,定义在深度2级。实心黑线是第一次迭代,虚线是第二次和最后一次迭代。我需要虚线立方体的所有中点的坐标。
我想另一种方法是根据深度计算立方体的大小,然后将其分成所需数量的部分,但这需要3个嵌套循环可能会通过数千个值,所以我'如果可能的话,我想避免使用嵌套循环方式。
编辑:作为2D示例,我在绘画中做了一件快速的事情,你可以看出为什么我认为它会非常简单。在3次迭代之后的最终结果将产生适合场景的64个坐标。
答案 0 :(得分:2)
我仍然不太确定这是否是你想要的,但这就是我的意思 做到这一点:
首先,我将创建一个表示3D空间中的点的类:
class Point3D:
"""Representation of a point in 3D space."""
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __add__(self, other):
"""Add two points.
>>> Point3D(1, 2, 3) + Point3D(100, 200, 300)
Point3D(101, 202, 303)
"""
x = self.x + other.x
y = self.y + other.y
z = self.z + other.z
return Point3D(x, y, z)
def __mul__(self, a):
"""Multiply a point with a number.
>>> Point3D(1, 2, 3) * 2
Point3D(2, 4, 6)
"""
x = self.x * a
y = self.y * a
z = self.z * a
return Point3D(x, y, z)
def __rmul__(self, a):
"""Multiply a number with a point.
>>> 2 * Point3D(1, 2, 3)
Point3D(2, 4, 6)
"""
return self.__mul__(a)
def __repr__(self):
return 'Point3D({p.x}, {p.y}, {p.z})'.format(p=self)
这允许在计算中心点时更易读的代码 衍生的立方体。
然后我会创建一个代表立方体的类。实例有能力分为八个部分,并了解它们的“深度”,这对于分割的立方体而言是减少的。
必须移动中心点的八个方向是
使用itertools.product
获得并表示为Point3D
各个坐标设置为-1 / + 1的对象。 (我给你所谓的DIR
提供了较短的名字octreeStructure
。)
多维数据集对象有一个帮助函数_divide
,它在一个级别上,这在递归函数divide
中使用,它从多维数据集的深度下降到目标深度。
注意用于生成扁平列表的二维列表推导。
from __future__ import division
from itertools import product
class Cube:
"""Representation of a cube."""
# directions to all eight corners of a cube
DIR = [Point3D(*s) for s in product([-1, +1], repeat=3)]
def __init__(self, center, size, depth=0):
if not isinstance(center, Point3D):
center = Point3D(*center)
self.center = center
self.size = size
self.depth = depth
def __repr__(self):
return 'Cube(center={c.center}, size={c.size}, depth={c.depth})'.format(c=self)
def _divide(self):
"""Divide into eight cubes of half the size and one level deeper."""
c = self.center
a = self.size/2
d = self.depth - 1
return [Cube(c + a/2*e, a, d) for e in Cube.DIR]
def divide(self, target_depth=0):
"""Recursively divide down to the given depth and return a list of
all 8^d cubes, where d is the difference between the depth of the
cube and the target depth, or 0 if the depth of the cube is already
equal to or less than the target depth.
>>> c = Cube(center=(0, 0, 0), size=2, depth=1)
>>> len(c.divide(0))
8
>>> len(c.divide(-1))
64
>>> c.divide(5)[0] is c
True
>>> c.divide(-1)[0].size
0.5
"""
if self.depth <= target_depth:
return [self]
smaller_cubes = self._divide()
return [c for s in smaller_cubes for c in s.divide(target_depth)]
您的示例是这样完成的:
# minDepthLevel = 0
# grid = {}
# grid[(1.5,0,0)] = [1,2]
# not sure what this ^ 1 means
cube = Cube((1.5, 0, 0), 4, 2)
grid = {c.center: [1, c.depth] for c in cube.divide(0)}