从私有指数(d),公共指数(e)和模数(n)计算素数p和q

时间:2010-05-27 13:14:31

标签: c# cryptography rsa

如何从e(公钥),d(私钥)和模数计算p和q参数?

我手头有BigInteger键我可以将粘贴复制到代码中。一个公钥,一个私钥和一个模数。

我需要从中计算出RSA参数p和q。但我怀疑有一个我无法用谷歌找到的库。有任何想法吗?感谢。

这不一定是暴力,因为我不是在私钥之后。我只有一个遗留系统,它存储公钥,私钥对和模数,我需要将它们放入c#以与RSACryptoServiceProvider一起使用。


所以归结为

计算(p + q)
public BigInteger _pPlusq()
    {
        int k = (this.getExponent() * this.getD() / this.getModulus()).IntValue();

        BigInteger phiN = (this.getExponent() * this.getD() - 1) / k;

        return phiN - this.getModulus() - 1;

    }

但这似乎不起作用。你能发现问题吗?


5小时后......:)

确定。如何在C#中选择Zn *(http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n)中的随机数?

4 个答案:

答案 0 :(得分:6)

我们假设 e 很小(这是常见的情况;传统的公共指数是65537)。我们还假设 ed = 1 mod phi(n),其中 phi(n)=(p-1)(q-1) (不一定是这种情况; RSA要求是 ed = 1 mod lcm(p-1,q-1) phi(n)< / em>只是 lcm(p-1,q-1)的倍数。

现在你有一些整数 k ed = k * phi(n)+1 。由于 d 小于 phi(n),您知道 k&lt; ë。所以你只需要少量的 k 来试试。实际上, phi(n)接近于 n (差异在于 sqrt(n)的顺序;换句话说,写的时候以位为单位, phi(n)的上半部分与 n 的上半部分相同,因此您可以使用: k' > K'=圆形(ED / n)的。只要的大小, k'非常接近 k (即 | k'-k |&lt; = 1 ) e 的大小不超过 n 的一半。

鉴于 k ,您很容易得到 phi(n)=(ed-1)/ k 。碰巧:

phi(n)=(p-1)(q-1)= pq - (p + q)+ 1 = n + 1 - (p + q)

因此,你得到 p + q = n + 1 - phi(n)。你也有 pq 。是时候记住,对于所有实数 a b a b 是两个解决方案二次方程 X 2 - (a + b)X + ab 。因此,给定 p + q pq ,通过求解二次方程得到 p q

p =((p + q)+ sqrt((p + q) 2 - 4 * pq))/ 2

q =((p + q) - sqrt((p + q) 2 - 4 * pq))/ 2

在一般情况下, e d 可能具有任意大小(可能大于 n ),因为RSA需要的是 ed = 1 mod (p-1) ed = 1 mod (q-1)。有一种通用(和快速)的方法看起来有点像Miller-Rabin素性测试。它在Handbook of Applied Cryptography(第8章,第8.2.2节,第287页)中进行了描述。该方法在概念上有点复杂(它涉及模幂运算)但可能更容易实现(因为没有平方根)。

答案 1 :(得分:4)

有一个从 n e d <恢复 p q 的程序/ em>在附录C中的NIST Special Publication 800-56B R1 Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography中描述。

所涉及的步骤是:

  1. k = de - 1 。如果 k 为奇数,则转到步骤4.
  2. k 写为 k = 2 t r ,其中r是除 k 之外的最大奇数,并且t≥1。或者更简单地说,将 k 重复除以2直到达到奇数。
  3. 对于 i = 1 100 ,请执行以下操作:
    1. 在[0,n-1]范围内生成随机整数 g
    2. y = g r mod n
    3. 如果 y = 1 y = n - 1 ,则转到步骤3.1(即重复此循环)。
    4. 对于 j = 1 t - 1 ,请执行以下操作:
      1. x = y 2 mod n
      2. 如果 x = 1 ,请转到(外部)第5步。
      3. 如果 x = n - 1 ,请转到步骤3.1。
      4. y = x
    5. x = y 2 mod n
    6. 如果 x = 1 ,请转到(外部)第5步。
    7. 继续
  4. 输出“未找到主要因素”并停止。
  5. p = GCD(y - 1,n)并让 q = n / p
  6. 输出(p,q)作为主要因素。
  7. 我最近用Java编写了一个实现。对我认识的C#没有直接用处,但也许可以轻松移植:

    // Step 1: Let k = de – 1. If k is odd, then go to Step 4
    BigInteger k = d.multiply(e).subtract(ONE);
    if (isEven(k)) {
    
        // Step 2 (express k as (2^t)r, where r is the largest odd integer
        // dividing k and t >= 1)
        BigInteger r = k;
        BigInteger t = ZERO;
    
        do {
            r = r.divide(TWO);
            t = t.add(ONE);
        } while (isEven(r));
    
        // Step 3
        Random random = new Random();
        boolean success = false;
        BigInteger y = null;
    
        step3loop: for (int i = 1; i <= 100; i++) {
    
            // 3a
            BigInteger g = getRandomBi(n, random);
    
            // 3b
            y = g.modPow(r, n);
    
            // 3c
            if (y.equals(ONE) || y.equals(n.subtract(ONE))) {
                // 3g
                continue step3loop;
            }
    
            // 3d
            for (BigInteger j = ONE; j.compareTo(t) <= 0; j = j.add(ONE)) {
                // 3d1
                BigInteger x = y.modPow(TWO, n);
    
                // 3d2
                if (x.equals(ONE)) {
                    success = true;
                    break step3loop;
                }
    
                // 3d3
                if (x.equals(n.subtract(ONE))) {
                    // 3g
                    continue step3loop;
                }
    
                // 3d4
                y = x;
            }
    
            // 3e
            BigInteger x = y.modPow(TWO, n);
            if (x.equals(ONE)) {
    
                success = true;
                break step3loop;
    
            }
    
            // 3g
            // (loop again)
        }
    
        if (success) {
            // Step 5
            p = y.subtract(ONE).gcd(n);
            q = n.divide(p);
            return;
        }
    }
    
    // Step 4
    throw new RuntimeException("Prime factors not found");
    

    此代码使用一些辅助定义/方法:

    private static final BigInteger ONE = BigInteger.ONE;
    private static final BigInteger TWO = BigInteger.valueOf(2);
    private static final BigInteger ZERO = BigInteger.ZERO;
    
    private static boolean isEven(BigInteger bi) {
        return bi.mod(TWO).equals(ZERO);
    }
    
    private static BigInteger getRandomBi(BigInteger n, Random rnd) {
        // From http://stackoverflow.com/a/2290089
        BigInteger r;
        do {
            r = new BigInteger(n.bitLength(), rnd);
        } while (r.compareTo(n) >= 0);
        return r;
    }
    

答案 2 :(得分:2)

如果有兴趣的话,我已经在C#中调整了Java code provided by Duncan

    public static void RecoverPQ(
        BigInteger n,
        BigInteger e,
        BigInteger d,
        out BigInteger p,
        out BigInteger q
        )
    {
        int nBitCount = (int)(BigInteger.Log(n, 2)+1);

        // Step 1: Let k = de – 1. If k is odd, then go to Step 4
        BigInteger k = d * e - 1;
        if (k.IsEven)
        {
            // Step 2 (express k as (2^t)r, where r is the largest odd integer
            // dividing k and t >= 1)
            BigInteger r = k;
            BigInteger t = 0;

            do
            {
                r = r / 2;
                t = t + 1;
            } while (r.IsEven);

            // Step 3
            var rng = new RNGCryptoServiceProvider();
            bool success = false;
            BigInteger y = 0;

            for (int i = 1; i <= 100; i++) {

                // 3a
                BigInteger g;
                do
                {
                    byte[] randomBytes = new byte[nBitCount / 8 + 1]; // +1 to force a positive number
                    rng.GetBytes(randomBytes);
                    randomBytes[randomBytes.Length - 1] = 0;
                    g = new BigInteger(randomBytes);
                } while (g >= n);

                // 3b
                y = BigInteger.ModPow(g, r, n);

                // 3c
                if (y == 1 || y == n-1) {
                    // 3g
                    continue;
                }

                // 3d
                BigInteger x;
                for (BigInteger j = 1; j < t; j = j + 1) {
                    // 3d1
                    x = BigInteger.ModPow(y, 2, n);

                    // 3d2
                    if (x == 1) {
                        success = true;
                        break;
                    }

                    // 3d3
                    if (x == n-1) {
                        // 3g
                        continue;
                    }

                    // 3d4
                    y = x;
                }

                // 3e
                x = BigInteger.ModPow(y, 2, n);
                if (x == 1) {

                    success = true;
                    break;

                }

                // 3g
                // (loop again)
            }

            if (success) {
                // Step 5
                p = BigInteger.GreatestCommonDivisor((y - 1), n);
                q = n / p;
                return;
            }
        }
        throw new Exception("Cannot compute P and Q");
    }

这使用标准的System.Numerics.BigInteger类。

通过以下单元测试进行测试:

BigInteger n = BigInteger.Parse("9086945041514605868879747720094842530294507677354717409873592895614408619688608144774037743497197616416703125668941380866493349088794356554895149433555027");
BigInteger e = 65537;
BigInteger d = BigInteger.Parse("8936505818327042395303988587447591295947962354408444794561435666999402846577625762582824202269399672579058991442587406384754958587400493169361356902030209");
BigInteger p;
BigInteger q;
RecoverPQ(n, e, d, out p, out q);
Assert.AreEqual(n, p * q);

答案 3 :(得分:1)

我实施了Thomas Pornin描述的method

BigInteger课程是Chew Keong TAN的C#版本(查看错误修复的codeproject评论)

    /// EXAMPLE (Hex Strings)
    /// N(MODULUS) = "DB2CB41E112BACFA2BD7C3D3D7967E84FB9434FC261F9D090A8983947DAF8488D3DF8FBDCC1F92493585E134A1B42DE519F463244D7ED384E26D516CC7A4FF7895B1992140043AACADFC12E856B202346AF8226B1A882137DC3C5A57F0D2815C1FCD4BB46FA9157FDFFD79EC3A10A824CCC1EB3CE0B6B4396AE236590016BA69"
    /// D(PRIVATE EXPONENT) = "18B44A3D155C61EBF4E3261C8BB157E36F63FE30E9AF28892B59E2ADEB18CC8C8BAD284B9165819CA4DEC94AA06B69BCE81706D1C1B668EB128695E5F7FEDE18A908A3011A646A481D3EA71D8A387D474609BD57A882B182E047DE80E04B4221416BD39DFA1FAC0300641962ADB109E28CAF50061B68C9CABD9B00313C0F46ED"
    /// E(PUBLIC EXPONENT) = "010001"
    /// RESULTS: 
    /// DP = "899324E9A8B70CA05612D8BAE70844BBF239D43E2E9CCADFA11EBD43D0603FE70A63963FE3FFA38550B5FEB3DA870D2677927B91542D148FA4BEA6DCD6B2FF57"
    /// DQ = "E43C98265BF97066FC078FD464BFAC089628765A0CE18904F8C15318A6850174F1A4596D3E8663440115D0EEB9157481E40DCA5EE569B1F7F4EE30AC0439C637"
    /// INVERSEQ = "395B8CF3240C325B0F5F86A05ABCF0006695FAB9235589A56759ECBF2CD3D3DFDE0D6F16F0BE5C70CEF22348D2D09FA093C01D909D25BC1DB11DF8A4F0CE552"
    /// P = "ED6CF6699EAC99667E0AFAEF8416F902C00B42D6FFA2C3C18C7BE4CF36013A91F6CF23047529047660DE14A77D13B74FF31DF900541ED37A8EF89340C623759B"
    /// Q = "EC52382046AA660794CC1A907F8031FDE1A554CDE17E8AA216AEDC92DB2E58B0529C76BD0498E00BAA792058B2766C40FD7A9CC2F6782942D91471905561324B"

    public static RSACryptoServiceProvider CreateRSAPrivateKey(string mod, string privExponent, string pubExponent)
    {
        var rsa = new RSACryptoServiceProvider
        {
            PersistKeyInCsp = false
        };
        var n = new BigInteger(mod, 16);
        var d = new BigInteger(privExponent, 16);
        var e = new BigInteger(pubExponent, 16);

        var zero = new BigInteger(0);
        var one = new BigInteger(1);
        var two = new BigInteger(2);
        var four = new BigInteger(4);


        BigInteger de = e*d;
        BigInteger modulusplus1 = n + one;
        BigInteger deminus1 = de - one;
        BigInteger p = zero;
        BigInteger q = zero;

        BigInteger kprima = de/n;

        var ks = new[] {kprima, kprima - one, kprima + one};

        bool bfound = false;
        foreach (BigInteger k in ks)
        {
            BigInteger fi = deminus1/k;
            BigInteger pplusq = modulusplus1 - fi;
            BigInteger delta = pplusq*pplusq - n*four;

            BigInteger sqrt = delta.sqrt();
            p = (pplusq + sqrt)/two;
            if (n%p != zero) continue;
            q = (pplusq - sqrt)/two;
            bfound = true;
            break;
        }

        if (bfound)
        {
            BigInteger dp = d%(p - one);
            BigInteger dq = d%(q - one);

            BigInteger inverseq = q.modInverse(p);

            var pars = new RSAParameters
            {
                D = d.getBytes(),
                DP = dp.getBytes(),
                DQ = dq.getBytes(),
                Exponent = e.getBytes(),
                Modulus = n.getBytes(),
                P = p.getBytes(),
                Q = q.getBytes(),
                InverseQ = inverseq.getBytes()
            };
            rsa.ImportParameters(pars);
            return rsa;
        }

        throw new CryptographicException("Error generating the private key");
    }