如何从e(公钥),d(私钥)和模数计算p和q参数?
我手头有BigInteger键我可以将粘贴复制到代码中。一个公钥,一个私钥和一个模数。
我需要从中计算出RSA参数p和q。但我怀疑有一个我无法用谷歌找到的库。有任何想法吗?感谢。
这不一定是暴力,因为我不是在私钥之后。我只有一个遗留系统,它存储公钥,私钥对和模数,我需要将它们放入c#以与RSACryptoServiceProvider一起使用。
所以归结为
计算(p + q)public BigInteger _pPlusq()
{
int k = (this.getExponent() * this.getD() / this.getModulus()).IntValue();
BigInteger phiN = (this.getExponent() * this.getD() - 1) / k;
return phiN - this.getModulus() - 1;
}
但这似乎不起作用。你能发现问题吗?
5小时后......:)
确定。如何在C#中选择Zn *(http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n)中的随机数?
答案 0 :(得分:6)
我们假设 e 很小(这是常见的情况;传统的公共指数是65537)。我们还假设 ed = 1 mod phi(n),其中 phi(n)=(p-1)(q-1) (不一定是这种情况; RSA要求是 ed = 1 mod lcm(p-1,q-1)和 phi(n)< / em>只是 lcm(p-1,q-1)的倍数。
现在你有一些整数 k 的 ed = k * phi(n)+1 。由于 d 小于 phi(n),您知道 k&lt; ë。所以你只需要少量的 k 来试试。实际上, phi(n)接近于 n (差异在于 sqrt(n)的顺序;换句话说,写的时候以位为单位, phi(n)的上半部分与 n 的上半部分相同,因此您可以使用: k' > K'=圆形(ED / n)的。只要的大小, k'非常接近 k (即 | k'-k |&lt; = 1 ) e 的大小不超过 n 的一半。
鉴于 k ,您很容易得到 phi(n)=(ed-1)/ k 。碰巧:
phi(n)=(p-1)(q-1)= pq - (p + q)+ 1 = n + 1 - (p + q)
因此,你得到 p + q = n + 1 - phi(n)。你也有 pq 。是时候记住,对于所有实数 a 和 b , a 和 b 是两个解决方案二次方程 X 2 - (a + b)X + ab 。因此,给定 p + q 和 pq ,通过求解二次方程得到 p 和 q :
p =((p + q)+ sqrt((p + q) 2 - 4 * pq))/ 2
q =((p + q) - sqrt((p + q) 2 - 4 * pq))/ 2
在一般情况下, e 和 d 可能具有任意大小(可能大于 n ),因为RSA需要的是 ed = 1 mod (p-1)和 ed = 1 mod (q-1)。有一种通用(和快速)的方法看起来有点像Miller-Rabin素性测试。它在Handbook of Applied Cryptography(第8章,第8.2.2节,第287页)中进行了描述。该方法在概念上有点复杂(它涉及模幂运算)但可能更容易实现(因为没有平方根)。
答案 1 :(得分:4)
有一个从 n , e 和 d <恢复 p 和 q 的程序/ em>在附录C中的NIST Special Publication 800-56B R1 Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography中描述。
所涉及的步骤是:
我最近用Java编写了一个实现。对我认识的C#没有直接用处,但也许可以轻松移植:
// Step 1: Let k = de – 1. If k is odd, then go to Step 4
BigInteger k = d.multiply(e).subtract(ONE);
if (isEven(k)) {
// Step 2 (express k as (2^t)r, where r is the largest odd integer
// dividing k and t >= 1)
BigInteger r = k;
BigInteger t = ZERO;
do {
r = r.divide(TWO);
t = t.add(ONE);
} while (isEven(r));
// Step 3
Random random = new Random();
boolean success = false;
BigInteger y = null;
step3loop: for (int i = 1; i <= 100; i++) {
// 3a
BigInteger g = getRandomBi(n, random);
// 3b
y = g.modPow(r, n);
// 3c
if (y.equals(ONE) || y.equals(n.subtract(ONE))) {
// 3g
continue step3loop;
}
// 3d
for (BigInteger j = ONE; j.compareTo(t) <= 0; j = j.add(ONE)) {
// 3d1
BigInteger x = y.modPow(TWO, n);
// 3d2
if (x.equals(ONE)) {
success = true;
break step3loop;
}
// 3d3
if (x.equals(n.subtract(ONE))) {
// 3g
continue step3loop;
}
// 3d4
y = x;
}
// 3e
BigInteger x = y.modPow(TWO, n);
if (x.equals(ONE)) {
success = true;
break step3loop;
}
// 3g
// (loop again)
}
if (success) {
// Step 5
p = y.subtract(ONE).gcd(n);
q = n.divide(p);
return;
}
}
// Step 4
throw new RuntimeException("Prime factors not found");
此代码使用一些辅助定义/方法:
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger ZERO = BigInteger.ZERO;
private static boolean isEven(BigInteger bi) {
return bi.mod(TWO).equals(ZERO);
}
private static BigInteger getRandomBi(BigInteger n, Random rnd) {
// From http://stackoverflow.com/a/2290089
BigInteger r;
do {
r = new BigInteger(n.bitLength(), rnd);
} while (r.compareTo(n) >= 0);
return r;
}
答案 2 :(得分:2)
如果有兴趣的话,我已经在C#中调整了Java code provided by Duncan:
public static void RecoverPQ(
BigInteger n,
BigInteger e,
BigInteger d,
out BigInteger p,
out BigInteger q
)
{
int nBitCount = (int)(BigInteger.Log(n, 2)+1);
// Step 1: Let k = de – 1. If k is odd, then go to Step 4
BigInteger k = d * e - 1;
if (k.IsEven)
{
// Step 2 (express k as (2^t)r, where r is the largest odd integer
// dividing k and t >= 1)
BigInteger r = k;
BigInteger t = 0;
do
{
r = r / 2;
t = t + 1;
} while (r.IsEven);
// Step 3
var rng = new RNGCryptoServiceProvider();
bool success = false;
BigInteger y = 0;
for (int i = 1; i <= 100; i++) {
// 3a
BigInteger g;
do
{
byte[] randomBytes = new byte[nBitCount / 8 + 1]; // +1 to force a positive number
rng.GetBytes(randomBytes);
randomBytes[randomBytes.Length - 1] = 0;
g = new BigInteger(randomBytes);
} while (g >= n);
// 3b
y = BigInteger.ModPow(g, r, n);
// 3c
if (y == 1 || y == n-1) {
// 3g
continue;
}
// 3d
BigInteger x;
for (BigInteger j = 1; j < t; j = j + 1) {
// 3d1
x = BigInteger.ModPow(y, 2, n);
// 3d2
if (x == 1) {
success = true;
break;
}
// 3d3
if (x == n-1) {
// 3g
continue;
}
// 3d4
y = x;
}
// 3e
x = BigInteger.ModPow(y, 2, n);
if (x == 1) {
success = true;
break;
}
// 3g
// (loop again)
}
if (success) {
// Step 5
p = BigInteger.GreatestCommonDivisor((y - 1), n);
q = n / p;
return;
}
}
throw new Exception("Cannot compute P and Q");
}
这使用标准的System.Numerics.BigInteger类。
通过以下单元测试进行测试:
BigInteger n = BigInteger.Parse("9086945041514605868879747720094842530294507677354717409873592895614408619688608144774037743497197616416703125668941380866493349088794356554895149433555027");
BigInteger e = 65537;
BigInteger d = BigInteger.Parse("8936505818327042395303988587447591295947962354408444794561435666999402846577625762582824202269399672579058991442587406384754958587400493169361356902030209");
BigInteger p;
BigInteger q;
RecoverPQ(n, e, d, out p, out q);
Assert.AreEqual(n, p * q);
答案 3 :(得分:1)
我实施了Thomas Pornin描述的method。
BigInteger课程是Chew Keong TAN的C#版本(查看错误修复的codeproject评论)
/// EXAMPLE (Hex Strings)
/// N(MODULUS) = "DB2CB41E112BACFA2BD7C3D3D7967E84FB9434FC261F9D090A8983947DAF8488D3DF8FBDCC1F92493585E134A1B42DE519F463244D7ED384E26D516CC7A4FF7895B1992140043AACADFC12E856B202346AF8226B1A882137DC3C5A57F0D2815C1FCD4BB46FA9157FDFFD79EC3A10A824CCC1EB3CE0B6B4396AE236590016BA69"
/// D(PRIVATE EXPONENT) = "18B44A3D155C61EBF4E3261C8BB157E36F63FE30E9AF28892B59E2ADEB18CC8C8BAD284B9165819CA4DEC94AA06B69BCE81706D1C1B668EB128695E5F7FEDE18A908A3011A646A481D3EA71D8A387D474609BD57A882B182E047DE80E04B4221416BD39DFA1FAC0300641962ADB109E28CAF50061B68C9CABD9B00313C0F46ED"
/// E(PUBLIC EXPONENT) = "010001"
/// RESULTS:
/// DP = "899324E9A8B70CA05612D8BAE70844BBF239D43E2E9CCADFA11EBD43D0603FE70A63963FE3FFA38550B5FEB3DA870D2677927B91542D148FA4BEA6DCD6B2FF57"
/// DQ = "E43C98265BF97066FC078FD464BFAC089628765A0CE18904F8C15318A6850174F1A4596D3E8663440115D0EEB9157481E40DCA5EE569B1F7F4EE30AC0439C637"
/// INVERSEQ = "395B8CF3240C325B0F5F86A05ABCF0006695FAB9235589A56759ECBF2CD3D3DFDE0D6F16F0BE5C70CEF22348D2D09FA093C01D909D25BC1DB11DF8A4F0CE552"
/// P = "ED6CF6699EAC99667E0AFAEF8416F902C00B42D6FFA2C3C18C7BE4CF36013A91F6CF23047529047660DE14A77D13B74FF31DF900541ED37A8EF89340C623759B"
/// Q = "EC52382046AA660794CC1A907F8031FDE1A554CDE17E8AA216AEDC92DB2E58B0529C76BD0498E00BAA792058B2766C40FD7A9CC2F6782942D91471905561324B"
public static RSACryptoServiceProvider CreateRSAPrivateKey(string mod, string privExponent, string pubExponent)
{
var rsa = new RSACryptoServiceProvider
{
PersistKeyInCsp = false
};
var n = new BigInteger(mod, 16);
var d = new BigInteger(privExponent, 16);
var e = new BigInteger(pubExponent, 16);
var zero = new BigInteger(0);
var one = new BigInteger(1);
var two = new BigInteger(2);
var four = new BigInteger(4);
BigInteger de = e*d;
BigInteger modulusplus1 = n + one;
BigInteger deminus1 = de - one;
BigInteger p = zero;
BigInteger q = zero;
BigInteger kprima = de/n;
var ks = new[] {kprima, kprima - one, kprima + one};
bool bfound = false;
foreach (BigInteger k in ks)
{
BigInteger fi = deminus1/k;
BigInteger pplusq = modulusplus1 - fi;
BigInteger delta = pplusq*pplusq - n*four;
BigInteger sqrt = delta.sqrt();
p = (pplusq + sqrt)/two;
if (n%p != zero) continue;
q = (pplusq - sqrt)/two;
bfound = true;
break;
}
if (bfound)
{
BigInteger dp = d%(p - one);
BigInteger dq = d%(q - one);
BigInteger inverseq = q.modInverse(p);
var pars = new RSAParameters
{
D = d.getBytes(),
DP = dp.getBytes(),
DQ = dq.getBytes(),
Exponent = e.getBytes(),
Modulus = n.getBytes(),
P = p.getBytes(),
Q = q.getBytes(),
InverseQ = inverseq.getBytes()
};
rsa.ImportParameters(pars);
return rsa;
}
throw new CryptographicException("Error generating the private key");
}