我正在研究Fama-McBeth的回归,并试图平均投资组合。为此,我已经最大化了投资组合的方差,并确定了ABC,FHI,GED,这是合适的分组。现在我需要考虑时间序列的平均回报并将它们组合在一起。我使用单独的for
循环来实现这一目标,但我正在寻找更多的" R"通过dplyr
或lapply
或任何其他适当方法执行此操作的方法,但我不确定如何完成此操作。我试图摆脱for
循环思维定势,并感谢任何帮助。
dput:
data <- structure(list(`NA` = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
), Index = c(29.65, -11.91, 14.73, 27.68, 5.18, 25.97, 10.64,
1.02, 18.82, 23.92, -41.61, -6.64), Factor = c(-9.84, 6.46, 16.12,
-16.51, 17.82, -13.31, -3.52, 8.43, 8.23, 7.06, -15.74, 2.03),
A = c(33.88, -49.87, 65.14, 14.46, 15.67, -32.17, -31.55,
-23.79, -4.59, -8.03, 78.22, 4.75), B = c(-25.2, 24.7, -25.04,
-38.64, 61.93, 44.94, -74.65, 47.02, 28.69, 48.61, -85.02,
42.95), C = c(36.48, -25.11, 18.91, -23.31, 63.95, -19.56,
50.18, -42.28, -0.54, 23.65, -0.79, -48.6), D = c(42.89,
-54.39, -39.86, -0.72, -32.82, 69.42, 74.52, 28.61, 2.32,
26.26, -68.7, 26.27), E = c(-39.89, 44.92, -3.91, -3.21,
44.26, 90.43, 15.38, -17.64, 42.36, -3.65, -85.71, 13.24),
F = c(39.67, -54.33, -5.69, 92.39, -42.96, 76.72, 21.95,
28.83, 18.93, 23.31, -45.64, -34.34), G = c(74.57, -79.76,
26.73, -3.82, 101.67, 1.72, -43.95, 98.01, -2.45, 15.36,
2.27, -54.47), H = c(40.22, -71.58, 14.49, 13.74, 24.24,
77.22, -13.4, 28.12, 37.65, 80.59, -72.47, -1.5), I = c(90.19,
-26.64, 18.14, 0.09, 8.98, 72.38, 28.95, 39.41, 94.67, 52.51,
-80.26, -24.46)), .Names = c("NA", "Index", "Factor", "A",
"B", "C", "D", "E", "F", "G", "H", "I"), row.names = c(NA, -12L
), class = "data.frame")
For Loops:
# Get Group 1 (ABC) averages
vec <- NULL
ABC <- NULL
for (i in 1:12) {
avg <- (data[i,4] + data[i,5] + data[i,6])/3
vec <- append(vec, avg)
assign(paste(stocks[1], stocks[2], stocks[3], sep = ""), vec)
}
# Get Group 2 (FHI) averages
vec <- NULL
FHI <- NULL
for (i in 1:12) {
avg <- (data[i,9] + data[i,11] + data[i,12])/3
vec <- append(vec, avg)
assign(paste(stocks[6], stocks[8], stocks[9], sep = ""), vec)
}
# Get Group 1 (GED) averages
vec <- NULL
GED <- NULL
for (i in 1:12) {
avg <- mean(data[i,7] + data[i,8] + data[i,10])/3
vec <- append(vec, avg)
assign(paste(stocks[7], stocks[5], stocks[4], sep = ""), vec)
}
group.df <- data.frame(ABC = ABC, FHI = FHI, GED = GED, index = data$Index, factor = data$Factor) # Build data.frame with averages, index, and factor
当前(所需)输出:
ABC FHI GED index factor
1 15.053333 56.693333 25.856667 29.65 -9.84
2 -16.760000 -50.850000 -29.743333 -11.91 6.46
3 19.670000 8.980000 -5.680000 14.73 16.12
4 -15.830000 35.406667 -2.583333 27.68 -16.51
5 47.183333 -3.246667 37.703333 5.18 17.82
6 -2.263333 75.440000 53.856667 25.97 -13.31
7 -18.673333 12.500000 15.316667 10.64 -3.52
8 -6.350000 32.120000 36.326667 1.02 8.43
9 7.853333 50.416667 14.076667 18.82 8.23
10 21.410000 52.136667 12.656667 23.92 7.06
11 -2.530000 -66.123333 -50.713333 -41.61 -15.74
12 -0.300000 -20.100000 -4.986667 -6.64 2.03
答案 0 :(得分:1)
简单的答案是
library(dplyr)
data %>% mutate(ABC = (A + B + C) / 3,
FHI = (F + H + I) / 3,
GED = (G + E + D) / 3) %>%
select(ABC, FHI, GED, Index, Factor)
这或多或少以同样的方式完成了你的工作。 (我省略了GED代码中单个值的mean
。)它不会自动将名称粘贴在一起。如果你想这样做,那么我希望你提供一个分组键,比如
grouping = data.frame(stock = c("A", "B", "C", "D", "E", "F", "G", "H", "I"),
group = c(1, 1, 1, 3, 3, 2, 3, 2, 2))
然后事情可以更自动地完成。由于您的示例在一个看似任意的分组中手动对列号进行硬编码,因此使列名称成为唯一的编程部分并不会增加太多。
要自动执行操作,您需要将melt
数据转换为长格式,然后加入分组df,然后您可以计算group_by(group, NA)
子句后的平均值,并再次扩展数据最后有dcast
。 (顺便说一下,"NA"
对于列名来说是一个糟糕的选择,我推荐&#34; row.number&#34;或&#34;时间&#34;或任何不是一个特殊的角色。)
我喜欢上面的dplyr,但你做了很多不必要的事情。即使在基地R中,您也可以更轻松地到达目的地,例如
data$ABC = with(data, (A + B + C) / 3)
data$FHI = with(data, (F + H + I) / 3)
data$GED = with(data, (G + E + D) / 3)
data = data[, c("ABC", "FHI", "GED", "Index", "Factor")]