映射中的类强制转换异常在将数据写入MySQL数据库时减少了作业

时间:2015-03-18 23:58:42

标签: java mysql hadoop

我正在尝试一个map reduce工作来加载mysql数据库中的数据,但是我面临一个类转换异常错误,这里是我使用的程序:

我首先创建一个实现Writable和DBWritable接口的DBOutputWritable类。 然后我使用我的reduce作业在数据库中写入数据,但是当我运行作业时,它失败了,说它有错误:

java.lang.ClassCastException: com.amalwa.hadoop.DataBaseLoadMapReduce.DBOutputWritable cannot be cast to org.apache.hadoop.mapreduce.lib.db.DBWritable

at org.apache.hadoop.mapreduce.lib.db.DBOutputFormat$DBRecordWriter.write(DBOutputFormat.java:66)
    at org.apache.hadoop.mapred.ReduceTask$NewTrackingRecordWriter.write(ReduceTask.java:601)
    at org.apache.hadoop.mapreduce.TaskInputOutputContext.write(TaskInputOutputContext.java:80)
    at com.amalwa.hadoop.DataBaseLoadMapReduce.DBMapReduce$DBReducer.reduce(DBMapReduce.java:58)
    at com.amalwa.hadoop.DataBaseLoadMapReduce.DBMapReduce$DBReducer.reduce(DBMapReduce.java:53)
    at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:176)
    at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:663)
    at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:426)
    at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1132)
    at org.apache.hadoop.mapred.Child.main(Child.java:249)

我很难搞清楚如果我的类实现了我们需要使用map reduce作业写入数据库的接口,那么为什么会有类转换异常。我正在实现所需的所有功能。

感谢。

DBOutputWritable
package com.amalwa.hadoop.DataBaseLoadMapReduce;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.lib.db.DBWritable;


public class DBOutputWritable implements Writable, DBWritable{

 private String keyValue;
 private String response;

 public DBOutputWritable(String keyValue, String response){
 this.keyValue = keyValue;
 this.response = response; 
 }

 public void readFields(DataInput resultSet) throws IOException {

 }

 public void readFields(ResultSet resultSet) throws SQLException {
 keyValue = resultSet.getString(1);
 response = resultSet.getString(2);
 }

 public void write(PreparedStatement preparedStatement) throws SQLException {
 preparedStatement.setString(1, keyValue);
 preparedStatement.setString(2, response);
 }

 public void write(DataOutput dataOutput) throws IOException {

 }

}

减速机:

public static class DBReducer extends Reducer<Text, Text, DBOutputWritable, NullWritable>{

 public void reduce(Text requestKey, Iterable<Text> response, Context context){
 for(Text responseSet: response){
 try{
 context.write(new DBOutputWritable(requestKey.toString(), responseSet.toString()), NullWritable.get());
 }catch(IOException e){
 System.err.println(e.getMessage());
 }
 catch(InterruptedException e){
 System.err.println(e.getMessage());
 }
 }
 }
 }

映射器:

公共静态类DBMapper扩展了Mapper {

    public void map(LongWritable key, Text value, Context context) throws IOException{
        String tweetInfo = value.toString();
        String[] myTweetData = tweetInfo.split(",", 2);
        String requestKey = myTweetData[0];
        String response = myTweetData[1];
        try {
            context.write(new Text(requestKey), new Text(response));
        } catch (InterruptedException e) {
            System.err.println(e.getMessage());;
        }
    }
}

主要课程:

public static void main(String[] args) throws Exception{
        Configuration conf = new Configuration();
        DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", "jdbc:mysql://ec2-54-152-254-194.compute-1.amazonaws.com/TWEETS", "user", "password");
        Job job = new Job(conf);
        job.setJarByClass(DBMapReduce.class);
        job.setMapperClass(DBMapper.class);
        job.setReducerClass(DBReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(DBOutputWritable.class);
        job.setOutputValueClass(NullWritable.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(DBOutputFormat.class);
        FileInputFormat.addInputPath(job, new Path(args[1]));
        DBOutputFormat.setOutput(job, "TWEET_INFO", new String[] { "REQUESTKEY", "TWEET_DETAILS" });
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

1 个答案:

答案 0 :(得分:1)

您似乎在混合使用旧的(org.apache.hadoop.mapred.*)和新的(org.apache.hadoop.mapreduce.*)MapReduce API,这会导致冲突。我怀疑您的DBReducer课程正在从新API扩展Reducer课程,但您的DBOutputWritable正在从旧API中实施DBWritable

您应该在实现中仅选择其中一个API,这意味着所有导入的MapReduce类型都以相同的包前缀开头。

请注意,通常在使用旧API时实现MapReduce接口,并在使用新API时扩展MapReduce基类。