我有15分钟的间隔数据。
[{
"_id" : ObjectId("5500a5e6f37a84d0509526ba"),
"runtimeMilliSeconds" : NumberLong("1426105802063"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 71.72000122070312,
"currentMemoryUtilization" : 77.4000015258789
}
}
{
"_id" : ObjectId("5500a96af37a84d0509526f8"),
"runtimeMilliSeconds" : NumberLong("1426106701622"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 70.30000305175781,
"currentMemoryUtilization" : 77.4000015258789
}
}
{
"_id" : ObjectId("5500aceef37a84d050952739"),
"runtimeMilliSeconds" : NumberLong("1426107601441"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 73.2300033569336,
"currentMemoryUtilization" : 77.4000015258789
}
}
{
"_id" : ObjectId("5500b07ff37a84d050952776"),
"runtimeMilliSeconds" : NumberLong("1426108501342"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 60.61000061035156,
"currentMemoryUtilization" : 77.4000015258789
}
}
{
"_id" : ObjectId("5500b404f37a84d0509527b7"),
"runtimeMilliSeconds" : NumberLong("1426109402199"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 60.060001373291016,
"currentMemoryUtilization" : 77.41000366210938
}
}
{
"_id" : ObjectId("5500b788f25a6f9765950f65"),
"runtimeMilliSeconds" : NumberLong("1426110301345"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 58.689998626708984,
"currentMemoryUtilization" : 77.41000366210938
}
}
{
"_id" : ObjectId("5500bb0cf37a84d050952837"),
"runtimeMilliSeconds" : NumberLong("1426111202063"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 70.69999694824219,
"currentMemoryUtilization" : 77.41000366210938
}
}
{
"_id" : ObjectId("5500be83f25a6f9765950fde"),
"runtimeMilliSeconds" : NumberLong("1426112101980"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 69.41000366210938,
"currentMemoryUtilization" : 77.44000244140625
}
}
{
"_id" : ObjectId("5500c206f37a84d0509528ac"),
"runtimeMilliSeconds" : NumberLong("1426113001781"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 70.63999938964844,
"currentMemoryUtilization" : 77.44000244140625
}
}
{
"_id" : ObjectId("5500c58cf37a84d0509528ea"),
"runtimeMilliSeconds" : NumberLong("1426113901510"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 68.38999938964844,
"currentMemoryUtilization" : 77.44000244140625
}
}
{
"_id" : ObjectId("5500c911f25a6f97659510a0"),
"runtimeMilliSeconds" : NumberLong("1426114801403"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 77.7300033569336,
"currentMemoryUtilization" : 77.44999694824219
}
}
{
"_id" : ObjectId("5500cca0f37a84d050952968"),
"runtimeMilliSeconds" : NumberLong("1426115702206"),
"cpuMemoryStats" : {
"currentCpuUtilization" : 74.23999786376953,
"currentMemoryUtilization" : 77.4800033569336
}
}]
我想按小时间隔对这些数据进行分组。这意味着我希望将每小时的4个文档分组到单个文档中,以便在&cusMemoryStats'密钥将是所有四个的平均值。 runtimeMilliSeconds也是4个文档的平均值。
即。我希望它像第一到第四,第五到第八个doucment。 我想要12个文件中的四个文件,平均密钥。
示例输出为:
[{
"_id" : ObjectId("5500a5e6f37a84d0509526ba"),
"runtimeMilliSeconds" : 1426107152000,
"cpuMemoryStats" : {
"currentCpuUtilization" : 68.96500206,
"currentMemoryUtilization" : 77.400001526
}
}
.
.
..
]
我试过以下:
db.collection.aggregate({"$match": { "hostId" : "1.1.1.1" , "customerId" : "customerId" ,
"runtimeMilliSeconds" : { "$gte" : 1426104902206}}},
{"$group" : {"_id" : { "$subtract" :[ {"$divide" : ["$runtimeMilliSeconds", 3600 ]},
{ "$mod" : [{"$divide" : ["$runtimeMilliSeconds", 3600 ]},1] } ] },
"memoryUtilization":{"$avg":"$cpuMemoryStats.currentMemoryUtilization"},
"runtime":{"$avg":"$runtimeMilliSeconds"}}})
如何使用mongo ???
按小时对数据进行分组答案 0 :(得分:4)
日期数学似乎是您的存储格式的明显案例:
db.collection.aggregate([
{ "$match": {
"hostId" : "1.1.1.1" ,
"customerId" : "customerId" ,
"runtimeMilliSeconds" : { "$gte" : 1426104902206 },
}},
{ "$group" : {
"_id" : {
"$subtract": [
"$runtimemilliSeconds",
{ "$mod": [
"$runtimemilliSeconds",
1000 * 60 * 15 // 1000 ms x 60 sec * 15 mins
]}
]
},
"memoryUtilization": { "$avg": "$cpuMemoryStats.currentMemoryUtilization" },
"runtime":{ "$avg": "$runtimeMilliSeconds" }
}}
])
所以为了记录,除了一般结构之外,你所寻找的是一个正确的"常数"如图所示,900000
为:
1000 milliseconds
x 60 seconds
x 15 minutes
为了实际达到一小时的间隔,您只需更改数字
1000 milliseconds
x 60 seconds
x 60 minutes
这是一个小时。所有间隔都是这样完成的。但它是模数而不是分裂。
答案 1 :(得分:0)
我非常接近回答。我纠正了我的逻辑(数学)。这是正确的查询 -
db.collection.aggregate({
"$match": {
"hostId": "1.1.1.1",
"customerId": "customerId",
"runtimeMilliSeconds": {
"$gte": 1426104902206
}
}
},
{
"$group": {
"_id": {
"$subtract": [
{
"$divide": [
"$runtimeMilliSeconds",
3600*1000
]
},
{
"$mod": [
{
"$divide": [
"$runtimeMilliSeconds",
3600*1000
]
},
1
]
}
]
},
"memoryUtilization": {
"$avg": "$cpuMemoryStats.currentMemoryUtilization"
},
"runtime": {
"$last": "$runtimeMilliSeconds"
}
}
},
{
$sort: {
runtime: 1
}
})
此查询将按小时对所有数据进行分组,如8.00到9.00,9.00到10.00等