了解OpenGL中的光照

时间:2015-03-11 22:11:37

标签: opengl haskell glut

我正在尝试使用Haskell / GLUT从一堆三角形中创建一个3D球体。它运作得很好:绿色的是"我的"球体,红色的球体是用GLUT的renderObject Sphere'完成的。我可以看到"我的"当我移动相机时球体真的是3D,所以很好。

那么为什么GLUT有一个很好的照明,我的没有? (我是一个新手,并不知道我在initGL中做了什么,从Hackage的长方体包中复制了那些东西......)

Nice and not-so-nice Spheres

以下是代码:

module Main where

import Graphics.UI.GLUT 

main :: IO ()
main = do
  initGL
  displayCallback $= render
  mainLoop

initGL :: IO ()
initGL = do
    getArgsAndInitialize
    initialDisplayMode $= [DoubleBuffered]
    createWindow "Chip!"
    initialDisplayMode $= [ WithDepthBuffer ]
    depthFunc          $= Just Less
    clearColor         $= Color4 0 0 0 0
    light (Light 0)    $= Enabled
    lighting           $= Enabled 
    lightModelAmbient  $= Color4 0.5 0.5 0.5 1 
    diffuse (Light 0)  $= Color4 1 1 1 1
    blend              $= Enabled
    blendFunc          $= (SrcAlpha, OneMinusSrcAlpha) 
    colorMaterial      $= Just (FrontAndBack, AmbientAndDiffuse)
    reshapeCallback    $= Just resizeScene
    return () 

render :: DisplayCallback
render = do
    clear [ ColorBuffer, DepthBuffer ]

    loadIdentity

    color $ Color3 (1 :: GLdouble) 1 1
    position (Light 0) $= Vertex4 0 50 (50) 1  

    preservingMatrix $ do 
        translate $ Vector3 ((-0.5) :: GLfloat) (-0.5) (-5)
        color green
        ball 12 8 0.03

    preservingMatrix $ do 
        translate $ Vector3 (0.5 :: GLfloat) 0.5 (-5)
        color red
        renderObject Solid (Sphere' 0.25 20 20)

    flush
    swapBuffers
    where green  = Color4 0.8 1.0 0.7 0.9 :: Color4 GLdouble
          red    = Color4 1.0 0.7 0.8 1.0 :: Color4 GLdouble

vertex3f :: (GLfloat, GLfloat, GLfloat) -> IO ()
vertex3f (x, y, z) = vertex $ Vertex3 x y z

upperInnerCircle :: Int -> [(GLfloat, GLfloat)]
upperInnerCircle numSegs =
    concat [[(0,0)
            ,(cos a, sqrt(1-(cos a)*(cos a)))
            ,(cos b, sqrt(1-(cos b)*(cos b)))] 
                 | (a,b)<-as ]
    where 
        seg'=pi/(fromIntegral numSegs)
        as = [(fromIntegral n * seg', fromIntegral (n+1) * seg') | n<-[0..numSegs-1]]

lowerInnerCircle :: Int -> [(GLfloat, GLfloat)]
lowerInnerCircle numSegs =
    map (\(x,y) -> (x,-y)) $ upperInnerCircle numSegs

innerCircle :: Int -> [(GLfloat, GLfloat)]
innerCircle numSegs = upperInnerCircle numSegs ++ (lowerInnerCircle numSegs)

upperOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
upperOutSegment numSegs ring seg =
   [x,y,u, u,v,y]
    where 
        seg'=pi/(fromIntegral numSegs)
        (a, b)  = (fromIntegral seg * seg', fromIntegral (seg+1) * seg')
        x =  (fromIntegral ring * cos a, fromIntegral ring * sqrt(1-(cos a)*(cos a)))
        y = (fromIntegral ring * cos b, fromIntegral ring * sqrt(1-(cos b)*(cos b)))
        u =  (fromIntegral (ring+1) * cos a, fromIntegral (ring+1) * sqrt(1-(cos a)*(cos a)))
        v = (fromIntegral (ring+1) * cos b, fromIntegral (ring+1) * sqrt(1-(cos b)*(cos b)))

lowerOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
lowerOutSegment numSegs ring seg =
    map (\(x,y) -> (x,-y)) $ upperOutSegment numSegs ring seg 

outSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
outSegment numSegs ring seg = upperOutSegment numSegs ring seg ++ (lowerOutSegment numSegs ring seg)

outerRing :: Int -> Int -> [(GLfloat, GLfloat)]
outerRing numSegs ring =
    concat [outSegment numSegs ring n | n<-[0..numSegs-1]] 

ball numSegs numRings factor =
  let ips = innerCircle numSegs
      ops = concat [outerRing numSegs i | i<-[1..numRings]]
      height dir ps = 
           map (\(x,y) -> 
                  let dist = sqrt(x*x+y*y)/(fromIntegral (numRings+1))
                      height' = sqrt(1.001-dist*dist)*factor*(fromIntegral (numRings+1))
                  in (x*factor,y*factor,dir*height')) $ ps
      ups = height 1 $ ips ++ ops
      lps = height (-1) $ ips ++ ops
  in  renderPrimitive Triangles $ mapM_ vertex3f (ups++lps)


resizeScene :: Size -> IO ()
resizeScene (Size w 0) = resizeScene (Size w 1) -- prevent divide by zero
resizeScene s@(Size width height) = do
  viewport   $= (Position 0 0, s)
  matrixMode $= Projection
  loadIdentity
  perspective 45 (w2/h2) 1 1000
  matrixMode $= Modelview 0
  flush
 where
   w2 = half width
   h2 = half height
   half z = realToFrac z / 2

编辑:现在工作,感谢Spektre!

这是照片:

Nice!

以下是代码:

module Main where

import Graphics.UI.GLUT 

main :: IO ()
main = do
  initGL
  displayCallback $= render
  mainLoop

initGL :: IO ()
initGL = do
    getArgsAndInitialize
    initialDisplayMode $= [DoubleBuffered]
    createWindow "Chip!"
    initialDisplayMode $= [ WithDepthBuffer ]
    depthFunc          $= Just Less
    clearColor         $= Color4 0 0 0 0
    light (Light 0)    $= Enabled
    lighting           $= Enabled 
    lightModelAmbient  $= Color4 0.5 0.5 0.5 1 
    diffuse (Light 0)  $= Color4 1 1 1 1
    blend              $= Enabled
    blendFunc          $= (SrcAlpha, OneMinusSrcAlpha) 
    colorMaterial      $= Just (FrontAndBack, AmbientAndDiffuse)
    reshapeCallback    $= Just resizeScene
    return () 

render :: DisplayCallback
render = do
    clear [ ColorBuffer, DepthBuffer ]

    loadIdentity

    color $ Color3 (1 :: GLdouble) 1 1
    position (Light 0) $= Vertex4 0 50 (50) 1  

    preservingMatrix $ do 
        translate $ Vector3 ((-0.5) :: GLfloat) (-0.5) (-5)
        color green
        ball 12 8 0.03

    preservingMatrix $ do 
        translate $ Vector3 (0.5 :: GLfloat) 0.5 (-5)
        color red
        renderObject Solid (Sphere' 0.25 20 20)

    flush
    swapBuffers
    where green  = Color4 0.8 1.0 0.7 0.9 :: Color4 GLdouble
          red    = Color4 1.0 0.7 0.8 1.0 :: Color4 GLdouble

pushTriangle :: ((GLfloat, GLfloat, GLfloat) 
                ,(GLfloat, GLfloat, GLfloat) 
                ,(GLfloat, GLfloat, GLfloat)) -> 
                IO ()
pushTriangle (p0, p1, p2) = do
    let (_,d0,_)=p0
    let (_,d1,_)=p1
    let (_,d2,_)=p2

    --if it points upwards, reverse normal
    let d=if d0+d1+d2>0 then (-1) else 1
    let n = cross (minus p1 p0) (minus p2 p1)
    let nL = 1/lenVec n
    let (n1, n2, n3) = scaleVec n (nL*d)
    normal $ Normal3 n1 n2 n3

    vertex3f p0
    vertex3f p1
    vertex3f p2

vertex3f :: (GLfloat, GLfloat, GLfloat) -> IO ()
vertex3f (x, y, z) = 
   vertex $ Vertex3 x y z

lenVec (a1,a2,a3) = sqrt $ a1*a1 + a2*a2 + a3*a3

scaleVec (a1,a2,a3) x = (a1*x,a2*x,a3*x)

cross (a1,a2,a3) (b1,b2,b3) =
   (a2*b3-a3*b2
   ,a3*b1-a1*b3
   ,a1*b2-a2*b1)

minus (a1,a2,a3) (b1,b2,b3) =
  (a1-b1, a2-b2, a3-b3)

upperInnerCircle :: Int -> [(GLfloat, GLfloat)]
upperInnerCircle numSegs =
    concat [[(cos a, sqrt(1-(cos a)*(cos a)))
            ,(0,0)
            ,(cos b, sqrt(1-(cos b)*(cos b)))] 
                 | (a,b)<-as ]
    where 
        seg'=pi/(fromIntegral numSegs)
        as = [(fromIntegral n * seg', fromIntegral (n+1) * seg') | n<-[0..numSegs-1]]

lowerInnerCircle :: Int -> [(GLfloat, GLfloat)]
lowerInnerCircle numSegs =
    map (\(x,y) -> (x,-y)) $ upperInnerCircle numSegs

innerCircle :: Int -> [(GLfloat, GLfloat)]
innerCircle numSegs = upperInnerCircle numSegs ++ (lowerInnerCircle numSegs)

upperOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
upperOutSegment numSegs ring seg =
   [x,y,u, v,u,y]
    where 
        seg'=pi/(fromIntegral numSegs)
        (a, b)  = (fromIntegral seg * seg', fromIntegral (seg+1) * seg')
        x =  (fromIntegral ring * cos a, fromIntegral ring * sqrt(1-(cos a)*(cos a)))
        y = (fromIntegral ring * cos b, fromIntegral ring * sqrt(1-(cos b)*(cos b)))
        u =  (fromIntegral (ring+1) * cos a, fromIntegral (ring+1) * sqrt(1-(cos a)*(cos a)))
        v = (fromIntegral (ring+1) * cos b, fromIntegral (ring+1) * sqrt(1-(cos b)*(cos b)))

lowerOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
lowerOutSegment numSegs ring seg =
    map (\(x,y) -> (x,-y)) $ upperOutSegment numSegs ring seg 

outSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
outSegment numSegs ring seg = upperOutSegment numSegs ring seg ++ (lowerOutSegment numSegs ring seg)

outerRing :: Int -> Int -> [(GLfloat, GLfloat)]
outerRing numSegs ring =
    concat [outSegment numSegs ring n | n<-[0..numSegs-1]] 

ball numSegs numRings factor =
  let ips = innerCircle numSegs
      ops = concat [outerRing numSegs i | i<-[1..numRings]]
      height dir ps = 
           map (\(x,y) -> 
                  let dist = sqrt(x*x+y*y)/(fromIntegral (numRings+1))
                      height' = sqrt(1.001-dist*dist)*factor*(fromIntegral (numRings+1))
                  in (x*factor,y*factor,dir*height')) $ ps
      ups = height 1 $ ips ++ ops
      lps = height (-1) $ ips ++ ops
  in  renderPrimitive Triangles $ mapM_ pushTriangle (toTriples (ups++lps))

toTriples :: [a] -> [(a,a,a)]
toTriples [] = []
toTriples (a:b:c:rest) = (a,b,c):toTriples rest 

resizeScene :: Size -> IO ()
resizeScene (Size w 0) = resizeScene (Size w 1) -- prevent divide by zero
resizeScene s@(Size width height) = do
  viewport   $= (Position 0 0, s)
  matrixMode $= Projection
  loadIdentity
  perspective 45 (w2/h2) 1 1000
  matrixMode $= Modelview 0
  flush
 where
   w2 = half width
   h2 = half height
   half z = realToFrac z / 2

1 个答案:

答案 0 :(得分:4)

  1. 曲面法线对于照明方程至关重要

    法线到表面是垂直于表面的矢量。因为三角形是通过其任意2个顶点向量的叉积来计算的,所以如果三角形点是p0,p1,p2,那么法线就是n=cross(p1-p0,p2-p1)或任何其他组合。

    法线告诉像素/面/多边形转向的方式通常是带有光方向的点积由渲染引擎计算得出cos(angle_between light and surface normal)。这个数字是当光源强度乘以你得到的浅色时,击中表面的光量的比例...... 结合表面颜色渲染得到像素颜色有很多光模型这一个非常简单(正常着色)。

    要使点积正常,法线应该是单位向量,所以除以它的长度n=n/|n|

    这里是法线的小例子

    example

    对于球体,法线很容易正常n任何点p都是n=(p-center)/radius

  2. 如果正常与表面不对应

    然后你就可以做出视觉上光滑锐利的网眼边缘的光效。例如,看看这里:

    也可以达到完全相反的效果(平滑网格但边缘渲染清晰)

  3. OpenGL界面

    旧样式gl使用类似glNormal3f(nx,ny,nz);的内容 VBO / VAO /数组也知道法线。新样式glNormal与大多数参数一样,因此您需要将其与自己的自定义布局绑定

  4. 正常方向

    任何表面都有两个可能的垂直方向。通常使用从网格向外指向的那个。有时3D曲线是使用双面材质,这意味着点积被处理为abs值,因此法线指向的方向无关紧要。如果没有这个,表面的另一面总是很暗

    因此,如果您有法线并且没有可见的光线,那么请尝试否定法线