我使用R中的survplot包绘制了一个入射曲线。我使用xlim选项将我的图形的x轴限制在0-28之间。但是,当我这样做时,x轴将始终延伸到30.我的数据中的最大潜在值是28.有没有办法可以将x轴修剪为28而不是30?
这是我的代码和带有额外x轴的图表示例。
survplot(Survobj,
ylim=c(0,10),
xlim=c(0,28),
ylab = "Cumulative Incidence, %",
conf=c("bands"),
fun=function(x) {100*(1-x)},
n.risk=FALSE,
time.inc=1,
cex.n.risk=0.9)
我会附上一张图片,但我需要10个声明点(对不起!)
答案 0 :(得分:1)
survplot.rms
的代码(与您使用的参数相同,并且展示了您描述的行为)是base-R-grphics,它使用pretty
函数构建x轴:
pretty(c(0,28))
#[1] 0 5 10 15 20 25 30
因此,如果您想要更改其行为,则需要破解代码。攻击R代码并不难,但我不清楚你是否已准备好进行冒险,因为你甚至没有命名正确使用该函数的软件包。这是一个相当长的功能。经验告诉我,我需要为新手提供一个交钥匙解决方案,而不是仅仅告诉他们添加参数并找到代码中的部分进行调整。以下是添加“notpretty”参数的方法,该参数用于确定max
参数上是否仅使用pretty
或xlim
函数:
survplot2 <- function (fit, ..., xlim, ylim = if (loglog) c(-5, 1.5) else if (what ==
"survival" & missing(fun)) c(0, 1), xlab, ylab, time.inc,
what = c("survival", "hazard"), type = c("tsiatis", "kaplan-meier"),
conf.type = c("log", "log-log", "plain", "none"), conf.int = FALSE,
conf = c("bands", "bars"), add = FALSE, label.curves = TRUE,
abbrev.label = FALSE, levels.only = FALSE, lty, lwd = par("lwd"),
col = 1, col.fill = gray(seq(0.95, 0.75, length = 5)), adj.subtitle = TRUE,
loglog = FALSE, fun, n.risk = FALSE, logt = FALSE, dots = FALSE,
dotsize = 0.003, grid = NULL, srt.n.risk = 0, sep.n.risk = 0.056,
adj.n.risk = 1, y.n.risk, cex.n.risk = 0.6, pr = FALSE,notpretty=FALSE)
{
what <- match.arg(what)
polyg <- ordGridFun(grid = FALSE)$polygon
ylim <- ylim
type <- match.arg(type)
conf.type <- match.arg(conf.type)
conf <- match.arg(conf)
opar <- par(c("mar", "xpd"))
on.exit(par(opar))
psmfit <- inherits(fit, "psm")
if (what == "hazard" && !psmfit)
stop("what=\"hazard\" may only be used for fits from psm")
if (what == "hazard" & conf.int > 0) {
warning("conf.int may only be used with what=\"survival\"")
conf.int <- FALSE
}
if (loglog) {
fun <- function(x) logb(-logb(ifelse(x == 0 | x == 1,
NA, x)))
use.fun <- TRUE
}
else if (!missing(fun)) {
use.fun <- TRUE
if (loglog)
stop("cannot specify loglog=T with fun")
}
else {
fun <- function(x) x
use.fun <- FALSE
}
if (what == "hazard" & loglog)
stop("may not specify loglog=T with what=\"hazard\"")
if (use.fun | logt | what == "hazard") {
dots <- FALSE
grid <- NULL
}
cox <- inherits(fit, "cph")
if (cox) {
if (n.risk | conf.int > 0)
surv.sum <- fit$surv.summary
exactci <- !(is.null(fit$x) | is.null(fit$y))
ltype <- "s"
}
else {
if (n.risk)
stop("the n.risk option applies only to fits from cph")
exactci <- TRUE
ltype <- "l"
}
par(xpd = NA)
ciupper <- function(surv, d) ifelse(surv == 0, 0, pmin(1,
surv * exp(d)))
cilower <- function(surv, d) ifelse(surv == 0, 0, surv *
exp(-d))
labelc <- is.list(label.curves) || label.curves
units <- fit$units
if (missing(ylab)) {
if (loglog)
ylab <- "log(-log Survival Probability)"
else if (use.fun)
ylab <- ""
else if (what == "hazard")
ylab <- "Hazard Function"
else ylab <- "Survival Probability"
}
if (missing(xlab)) {
if (logt)
xlab <- paste("log Survival Time in ", units, "s",
sep = "")
else xlab <- paste(units, "s", sep = "")
}
maxtime <- fit$maxtime
maxtime <- max(pretty(c(0, maxtime)))
if (missing(time.inc))
time.inc <- fit$time.inc
if (missing(xlim))
xlim <- if (logt)
logb(c(maxtime/100, maxtime))
else c(0, maxtime)
if (length(grid) && is.logical(grid))
grid <- if (grid)
gray(0.8)
else NULL
if (is.logical(conf.int)) {
if (conf.int)
conf.int <- 0.95
else conf.int <- 0
}
zcrit <- qnorm((1 + conf.int)/2)
xadj <- Predict(fit, type = "model.frame", np = 5, factors = rmsArgs(substitute(list(...))))
info <- attr(xadj, "info")
varying <- info$varying
if (length(varying) > 1)
stop("cannot vary more than one predictor")
adjust <- if (adj.subtitle)
info$adjust
else NULL
if (length(xadj)) {
nc <- nrow(xadj)
covpres <- TRUE
}
else {
nc <- 1
covpres <- FALSE
}
y <- if (length(varying))
xadj[[varying]]
else ""
curve.labels <- NULL
xd <- xlim[2] - xlim[1]
if (n.risk & !add) {
mar <- opar$mar
if (mar[4] < 4) {
mar[4] <- mar[4] + 2
par(mar = mar)
}
}
lty <- if (missing(lty))
seq(nc + 1)[-2]
else rep(lty, length = nc)
col <- rep(col, length = nc)
lwd <- rep(lwd, length = nc)
i <- 0
if (levels.only)
y <- gsub(".*=", "", y)
abbrevy <- if (abbrev.label)
abbreviate(y)
else y
abbrevy <- if (is.factor(abbrevy))
as.character(abbrevy)
else format(abbrevy)
if (labelc || conf == "bands")
curves <- vector("list", nc)
for (i in 1:nc) {
ci <- conf.int
ay <- if (length(varying))
xadj[[varying]]
else ""
if (covpres) {
adj <- xadj[i, , drop = FALSE]
w <- survest(fit, newdata = adj, fun = fun, what = what,
conf.int = ci, type = type, conf.type = conf.type)
}
else w <- survest(fit, fun = fun, what = what, conf.int = ci,
type = type, conf.type = conf.type)
time <- w$time
if (logt)
time <- logb(time)
s <- !is.na(time) & (time >= xlim[1])
surv <- w$surv
if (is.null(ylim))
ylim <- range(surv, na.rm = TRUE)
stratum <- w$strata
if (is.null(stratum))
stratum <- 1
if (!is.na(stratum)) {
cl <- if (is.factor(ay))
as.character(ay)
else format(ay)
curve.labels <- c(curve.labels, abbrevy[i])
if (i == 1 & !add) {
plot(time, surv, xlab = xlab, xlim = xlim, ylab = ylab,
ylim = ylim, type = "n", axes = FALSE)
mgp.axis(1, at = if (logt)
pretty(xlim)
# This is the line that was changed -----------------------
else seq(xlim[1], if(notpretty){max(xlim)}else{max(pretty(xlim))}, time.inc),
# end of modifications ------------------------
labels = TRUE)
mgp.axis(2, at = pretty(ylim))
if (!logt & (dots || length(grid))) {
xlm <- pretty(xlim)
xlm <- c(xlm[1], xlm[length(xlm)])
xp <- seq(xlm[1], xlm[2], by = time.inc)
yd <- ylim[2] - ylim[1]
if (yd <= 0.1)
yi <- 0.01
else if (yd <= 0.2)
yi <- 0.025
else if (yd <= 0.4)
yi <- 0.05
else yi <- 0.1
yp <- seq(ylim[2], ylim[1] + if (n.risk &&
missing(y.n.risk))
yi
else 0, by = -yi)
if (dots)
for (tt in xp) symbols(rep(tt, length(yp)),
yp, circles = rep(dotsize, length(yp)),
inches = dotsize, add = TRUE)
else abline(h = yp, v = xp, col = grid, xpd = FALSE)
}
}
tim <- time[s]
srv <- surv[s]
if (conf.int > 0 && conf == "bands") {
blower <- w$lower[s]
bupper <- w$upper[s]
}
if (max(tim) > xlim[2]) {
if (ltype == "s") {
s.last <- srv[tim <= xlim[2] + 1e-06]
s.last <- s.last[length(s.last)]
k <- tim < xlim[2]
tim <- c(tim[k], xlim[2])
srv <- c(srv[k], s.last)
if (conf.int > 0 && conf == "bands") {
low.last <- blower[time <= xlim[2] + 1e-06]
low.last <- low.last[length(low.last)]
up.last <- bupper[time <= xlim[2] + 1e-06]
up.last <- up.last[length(up.last)]
blower <- c(blower[k], low.last)
bupper <- c(bupper[k], up.last)
}
}
else tim[tim > xlim[2]] <- NA
}
if (conf != "bands")
lines(tim, srv, type = ltype, lty = lty[i], col = col[i],
lwd = lwd[i])
if (labelc || conf == "bands")
curves[[i]] <- list(tim, srv)
if (pr) {
zest <- rbind(tim, srv)
dimnames(zest) <- list(c("Time", "Survival"),
rep("", length(srv)))
cat("\nEstimates for ", cl, "\n\n")
print(zest, digits = 3)
}
if (conf.int > 0) {
if (conf == "bands") {
polyg(x = c(tim, rev(tim)), y = c(blower, rev(bupper)),
col = col.fill[i], type = ltype)
}
else {
if (exactci) {
tt <- seq(0, maxtime, time.inc)
v <- survest(fit, newdata = adj, times = tt,
what = what, fun = fun, conf.int = ci,
type = type, conf.type = conf.type)
tt <- v$time
ss <- v$surv
lower <- v$lower
upper <- v$upper
if (!length(ylim))
ylim <- range(ss, na.rm = TRUE)
if (logt)
tt <- logb(ifelse(tt == 0, NA, tt))
}
else {
tt <- as.numeric(dimnames(surv.sum)[[1]])
if (logt)
tt <- logb(tt)
ss <- surv.sum[, stratum, "Survival"]^exp(w$linear.predictors)
se <- surv.sum[, stratum, "std.err"]
ss <- fun(ss)
lower <- fun(cilower(ss, zcrit * se))
upper <- fun(ciupper(ss, zcrit * se))
ss[is.infinite(ss)] <- NA
lower[is.infinite(lower)] <- NA
upper[is.infinite(upper)] <- NA
}
tt <- tt + xd * (i - 1) * 0.01
errbar(tt, ss, upper, lower, add = TRUE, lty = lty[i],
col = col[i])
}
}
if (n.risk) {
if (length(Y <- fit$y)) {
tt <- seq(max(0, xlim[1]), min(maxtime, xlim[2]),
by = time.inc)
ny <- ncol(Y)
if (!length(str <- fit$Strata))
Y <- Y[, ny - 1]
else Y <- Y[unclass(str) == unclass(stratum),
ny - 1]
nrisk <- rev(cumsum(table(cut(-Y, sort(unique(-c(tt,
range(Y) + c(-1, 1))))))[-length(tt) - 1]))
}
else {
if (is.null(surv.sum))
stop("you must use surv=T or y=T in fit to use n.risk=T")
tt <- as.numeric(dimnames(surv.sum)[[1]])
l <- (tt >= xlim[1]) & (tt <= xlim[2])
tt <- tt[l]
nrisk <- surv.sum[l, stratum, 2]
}
tt[1] <- xlim[1]
yd <- ylim[2] - ylim[1]
if (missing(y.n.risk))
y.n.risk <- ylim[1]
yy <- y.n.risk + yd * (nc - i) * sep.n.risk
nri <- nrisk
nri[tt > xlim[2]] <- NA
text(tt[1], yy, nri[1], cex = cex.n.risk, adj = adj.n.risk,
srt = srt.n.risk)
text(tt[-1], yy, nri[-1], cex = cex.n.risk, adj = 1)
text(xlim[2] + xd * 0.025, yy, adj = 0, curve.labels[i],
cex = cex.n.risk)
}
}
}
if (conf == "bands")
for (i in 1:length(y)) lines(curves[[i]][[1]], curves[[i]][[2]],
type = ltype, lty = lty[i], col = col[i], lwd = lwd[i])
if (labelc)
labcurve(curves, curve.labels, type = ltype, lty = lty,
col. = col, lwd = lwd, opts = label.curves)
if (length(adjust))
title(sub = paste("Adjusted to:", adjust), adj = 0, cex = 0.6)
invisible(list(adjust = adjust, curve.labels = curve.labels))
}
environment(survplot2) <- environment(rms:::survplot.rms)
使用rms::survplot
和xlim=c(0,26)
对xlim=c(0,28)
中的第一个示例进行了测试。需要分配环境,否则会出现此错误:
Error in Predict(fit, type = "model.frame", np = 5,
factors = rmsArgs(substitute(list(...)))) :
could not find function "rmsArgs"