混淆矩阵与其上的分类/错误分类实例的数量(Python / Matplotlib)

时间:2010-05-24 14:48:11

标签: python matplotlib confusion-matrix

我正在使用matplotlib绘制一个混淆矩阵,其代码如下:

from numpy import *
import matplotlib.pyplot as plt
from pylab import *

conf_arr = [[33,2,0,0,0,0,0,0,0,1,3], [3,31,0,0,0,0,0,0,0,0,0], [0,4,41,0,0,0,0,0,0,0,1], [0,1,0,30,0,6,0,0,0,0,1], [0,0,0,0,38,10,0,0,0,0,0], [0,0,0,3,1,39,0,0,0,0,4], [0,2,2,0,4,1,31,0,0,0,2], [0,1,0,0,0,0,0,36,0,2,0], [0,0,0,0,0,0,1,5,37,5,1], [3,0,0,0,0,0,0,0,0,39,0], [0,0,0,0,0,0,0,0,0,0,38] ]

norm_conf = []
for i in conf_arr:
    a = 0
    tmp_arr = []
    a = sum(i,0)
    for j in i:
        tmp_arr.append(float(j)/float(a))
    norm_conf.append(tmp_arr)

plt.clf()
fig = plt.figure()
ax = fig.add_subplot(111)
res = ax.imshow(array(norm_conf), cmap=cm.jet, interpolation='nearest')
cb = fig.colorbar(res)
savefig("confmat.png", format="png")

但是我想在混淆矩阵中显示数字就像这个图形(右图)。如何在图形上绘制conf_arr

confusion matrix

2 个答案:

答案 0 :(得分:10)

您可以使用text在绘图中添加任意文字。例如,在代码中插入以下行将写入数字(注意代码中的第一行和最后一行是为了显示插入行的位置):

res = ax.imshow(array(norm_conf), cmap=cm.jet, interpolation='nearest')
for i, cas in enumerate(conf_arr):
    for j, c in enumerate(cas):
        if c>0:
            plt.text(j-.2, i+.2, c, fontsize=14)
cb = fig.colorbar(res)

matrix with numbers

答案 1 :(得分:1)

我真正看到的唯一方法就是使用注释。试试这些:

for i,j in ((x,y) for x in xrange(len(conf_arr))
            for y in xrange(len(conf_arr[0]))):
    ax.annotate(str(conf_arr[i][j]),xy=(i,j))

保存图之前。它会添加数字,但我会让你弄清楚如何根据需要获得数字的大小。