我有以下代码。 基本上它是创建N个随机正态变量,并通过M次方程运行模拟。
输出应该是NxM数据矩阵,但是我可以进行计算的唯一方法是输出为MxN。即每个M run应该是一列,而不是一行。 我试图遵循以前类似主题上发布的其他一些建议是徒劳的。
代码:
#include <iostream>
#include <time.h>
#include <random>
int main()
{
double T = 1; // End time period for simulation
int N = 4; // Number of time steps
int M = 2; // Number of simulations
double x0 = 1.00; // Starting x value
double mu = 0.00; // mu(x,t) value
double sig = 1.00; // sigma(x,t) value
double dt = T/N;
double sqrt_dt = sqrt(dt);
double** SDE_X = new double*[M]; // SDE Matrix setup
// Random Number generation setup
double RAND_N;
srand ((unsigned int) time(NULL)); // Generator loop reset
std::default_random_engine generator (rand());
std::normal_distribution<double> distribution (0.0,1.0); // Mean = 0.0, Variance = 1.0 ie Normal
for (int i = 0; i < M; i++)
{
SDE_X[i] = new double[N];
for (int j=0; j < N; j++)
{
RAND_N = distribution(generator);
SDE_X[i][0] = x0;
SDE_X[i][j+1] = SDE_X[i][j] + mu * dt + sig * RAND_N * sqrt_dt; // The SDE we wish to plot the path for
std::cout << SDE_X[i][j] << " ";
}
std::cout << std::endl;
}
std::cout << std::endl;
std::cout << " The simulation is complete!!" << std::endl;
std::cout << std::endl;
system("pause");
return 0;
}
答案 0 :(得分:0)
那你为什么不能创建SDE_X矩阵的转置呢?这不是你想得到的吗?
答案 1 :(得分:0)
请记住,该演示文稿与实施无关。是您访问列还是行是您的决定。所以你想要一个转置的实现。然后快速和脏地创建您的矩阵,然后创建您的数字系列。改变i和j,以及N和M.
我说快速而且肮脏,因为程序根本不好:
我会更改一下你的代码:
答案 2 :(得分:0)
谢谢大家的意见。我能够实现我的代码并根据需要显示它。 我添加了第二个for循环来重新排列矩阵行和列。 如果您认为无论如何我可以改进它,请随时告诉我。
#include <iostream>
#include <time.h>
#include <random>
#include <vector>
int main()
{
double T = 1; // End time period for simulation
int N = 3; // Number of time steps
int M = 2; // Number of simulations
int X = 100; // Max number of matrix columns
int Y = 100; // Max number of matrix rows
double x0 = 1.00; // Starting x value
double mu = 0.00; // mu(x,t) value
double sig = 1.00; // sigma(x,t) value
double dt = T/N;
double sqrt_dt = sqrt(dt);
std::vector<std::vector<double>> SDE_X((M*N), std::vector<double>((M*N))); // SDE Matrix setup
// Random Number generation setup
double RAND_N;
srand ((unsigned int) time(NULL)); // Generator loop reset
std::default_random_engine generator (rand());
std::normal_distribution<double> distribution (0.0,1.0); // Mean = 0.0, Variance = 1.0 ie Normal
for (int i = 0; i <= M; i++)
{
SDE_X[i][0] = x0;
for (int j=0; j <= N; j++)
{
RAND_N = distribution(generator);
SDE_X[i][j+1] = SDE_X[i][j] + mu * dt + sig * RAND_N * sqrt_dt; // The SDE we wish to plot the path for
}
}
for (int j = 0; j <= N; j++)
{
for (int i = 0; i <=M; i++)
{
std::cout << SDE_X[i][j] << ", ";
}
std::cout << std::endl;
}
std::cout << std::endl;
std::cout << " The simulation is complete!!" << std::endl;
std::cout << std::endl;
system("pause");
return 0;
}