具有内部元素的外部列表,每个内部元素都是 平面/嵌套列表。每个所述内部列表具有与前一外部单元格中的内部列表匹配的嵌套结构。这意味着列表中的每个原始值对应于原始值或列表 - 在以下单元格列表中(递归应用)。因此,每个内部列表的深度等于或超过前一个单元格中元素的深度。
(请注意,第一个单元格元素可以作为任何深度的嵌套列表开始。)
上述例子:
[
[[1, 2, [3, 4]], 1 ],
[[3, [4, 5], [6, 7]], [5, 4] ],
[[5, [6, 7], [8, 9]], [7, [8, 6]] ],
]
希望将嵌套列表展开为元组列表,其中每个值与父值组合,或者如果parent是list(维护顺序),则将相应的列表元素组合在一起。因此,对于上面的示例列表,输出应为:
[
(1, 3, 5),
(2, 4, 6),
(2, 5, 7),
(3, 6, 8),
(4, 7, 9),
(1, 5, 7),
(1, 4, 8),
(1, 4, 6),
]
注意:此问题是对前一个问题here的扩展,但与链接的问题不同,此处所需的元组是平的。
答案 0 :(得分:0)
好的,这个怎么样:
x = [
[[1, 2, [3, 4]], 1 ],
[[3, [4, 5], [6, 7]], [5, 4] ],
[[5, [6, 7], [8, 9]], [7, [8, 6]] ],
]
from collections import defaultdict
def g(x):
paths = defaultdict(lambda: [])
def calculate_paths(item, counts):
if type(item) is list:
for i, el in enumerate(item):
calculate_paths(el, counts + (i,))
else:
paths[counts].append(item)
def recreate_values(k, initial_len, desired_len):
if len(paths[k]) + initial_len == desired_len:
yield paths[k]
else:
for ks in keysets:
if len(ks) > len(k) and ks[0:len(k)] == k:
for ks1 in recreate_values(ks, initial_len + len(paths[k]), desired_len):
yield paths[k] + ks1
for lst in x:
calculate_paths(lst, (0,))
keysets = sorted(list(paths.keys()))
for k in keysets:
yield from recreate_values(k, 0, len(x))
>>> import pprint
>>> pprint.pprint(list(g(x)))
[[1, 3, 5],
[2, 4, 6],
[2, 5, 7],
[3, 6, 8],
[4, 7, 9],
[1, 5, 7],
[1, 4, 8],
[1, 4, 6]]
通过创建"路径&#34>来工作。对于结构中的每个数字,这是一个元组,用于标识它在特定行中的拟合方式。
(原始尝试):
如果它总是三个级别,那么这样的东西?
def listify(lst):
max_len = max(len(item) if type(item) is list else 1 for item in lst)
yield from zip(*[item if type(item) is list else [item] * max_len for item in lst])
def f():
for i in listify(x):
for j in listify(i):
for k in listify(j):
yield k
>>> list(f())
答案 1 :(得分:0)
这是一个需要解决的问题: - )
我确实设法按预期获得了不同级别的解决方案。但是,我做了一个假设:
如果没有问题,以下解决方案将正常工作: - )
input = [
[[1, 2, [3, 4]], 1 ],
[[3, [4, 5], [6, 7]], [5, 4] ],
[[5, [6, 7], [8, 9]], [7, [8, 6]] ],
]
def level_flatten(level):
"""
This method compares the elements and their types of last column and
makes changes to other columns accordingly
"""
for k, l in level.items():
size = len(l[-1]) if isinstance(l[-1], list) else 1
# Mostly l[-1] is going to be a list; this is for just in case
elements = l[-1]
for i in range(-1, -len(l)-1, -1):
elem = l[i]
if isinstance(l[i], int):
l[i] = [elem] * size
else:
for j in range(len(elem)):
if not isinstance(elem[j], type(elements[j])):
# For a list found in elements[j], there is a int at l[i][j]
elem[j] = [elem[j]] * len(elements[j])
return level
level = {}
for i in range(len(input[0])):
level[i] = []
for j in input:
level[i].append(j[i])
for k, l in level.items():
for i in range(len(l[-1])):
level = level_flatten(level)
total_flat = []
for item in l:
row = []
for x in item:
if isinstance(x, list):
row += x
else:
row.append(x)
total_flat.append(row)
level[k] = total_flat
output_list = []
for i in range(len(level)):# For maintaining the order
output_list += zip(*level[i])
print output_list
我知道这不是一个漂亮的解决方案,可以进一步优化。我想要一个比这更好的算法。如果我得到更好的解决方案,将会更新: - )
答案 2 :(得分:0)
我首先尝试使用2d矩阵来解决这个问题,但事实证明,迭代它上面的列段的最后一行更简单:
def unfold(ldata):
'''
ldata: list of hierarchical lists.
technique: repeatedly flatten bottom row one level at a time, unpacking lists or
adding repeats in the column above at the same time.
convention: n=1 are primitives, n>=2 are lists.
'''
has_lists = True
while has_lists:
has_lists = False
for i, elm in enumerate(ldata[-1]):
if type(elm) is list:
has_lists = True
ldata[-1][i:i+1] = ldata[-1][i] # unpack
for k in range(0, len(ldata)-1): # over corresponding items in above column
if type(ldata[k][i]) is list:
ldata[k][i:i+1] = ldata[k][i] # unpack
else:
ldata[k][i:i+1] = [ldata[k][i]]*len(elm) # add repeats
return list(zip(*ldata))
x = [
[[1, 2, [3, 4]], 1 ],
[[3, [4, 5], [6, 7]], [5, 4] ],
[[5, [6, 7], [8, 9]], [7, [8, 6]] ],
]
from pprint import pprint
pprint(unfold(x))
>>>
[(1, 3, 5),
(2, 4, 6),
(2, 5, 7),
(3, 6, 8),
(4, 7, 9),
(1, 5, 7),
(1, 4, 8),
(1, 4, 6)]