卷积两个矩形脉冲Python

时间:2015-03-08 18:34:36

标签: python numpy matplotlib signal-processing convolution

我试图找到两个矩形脉冲的卷积。

没有抛出任何错误 - 我得到了一个适当形状的波形输出 - 然而,我的答案的幅度看起来非常大,我也不确定如何拟合正确的x /时间轴这个卷积。

此外,卷积的大小似乎取决于两个脉冲中的样本数量(基本上是采样频率) - 我认为这是不正确的。

当我试图模拟连续时间信号而非离散时,我将采样频率设置得非常高。

显然我做错了什么 - 但它是什么,我该如何纠正呢? 非常感谢 - 如果某些代码不是非常“pythonic”(最近的Java转换),请道歉!

编辑:在尝试手工评估时,我发现时间轴太小了2倍;再次,我不知道为什么会这样

import numpy as np
import matplotlib.pyplot as plt
from sympy.functions.special import delta_functions as dlta

def stepFunction(t): #create pulses below from step-functions
    retval = 0
    if t == 0:
        retval = 1
    else:
        retval = dlta.Heaviside(t)
    return retval

def hT (t=0, start=0, dur=8, samples=1000):

    time = np.linspace(start, start + dur, samples, True)
    data = np.zeros(len(time))
    hTArray = np.column_stack((time, data))

    for row in range(len(hTArray)):
        hTArray[row][1] = 2 * (stepFunction(hTArray[row][0] - 4) - stepFunction(hTArray[row][0] - 6))
    return hTArray

def xT (t=0, start=0, dur=8, samples=1000):

    time = np.linspace(start, start + dur, samples, True)
    data = np.zeros(len(time))
    hTArray = np.column_stack((time, data))

    for row in range(len(hTArray)):
        hTArray[row][1] = (stepFunction(hTArray[row][0]) - stepFunction(hTArray[row][0] - 4))
    return hTArray    


hTArray = hT() #populate two arrays with functions
xTArray = xT()

resCon = np.convolve(hTArray[:, 1], xTArray[:, 1]) #convolute signals/array data


Xaxis = np.linspace(hTArray[0][0], hTArray[len(hTArray) - 1][0],
     len(resCon), endpoint=True)  # create time axis, with same intervals as original functions
#Plot the functions & convolution    
plt.plot(hTArray[:, 0], hTArray[:, 1], label=r'$x1(t)$')
plt.plot(xTArray[:, 0], xTArray[:, 1], label=r'$x2(t)$')
plt.plot(Xaxis, resCon)

plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
   ncol=2, mode="expand", borderaxespad=0.)

ax = plt.gca()
ax.grid(True)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

plt.show()

1 个答案:

答案 0 :(得分:3)

当你收敛离散信号时,你需要适当地缩放以保持信号的能量(积分超过| x(t)|²)不变:

import numpy as np
import matplotlib.pyplot as plt


n = 1000
t = np.linspace(0, 8, n)
T = t[1] - t[0]  # sampling width

x1 = np.where(t<=4, 1, 0) # build input functions
x2 = np.where(np.logical_and(t>=4, t<=6), 2, 0)

y = np.convolve(x1, x2, mode='full') * T  # scaled convolution 
ty = np.linspace(0, 2*8, n*2-1)  # double time interval

# plot results:    
fg, ax = plt.subplots(1, 1)
ax.plot(t, x1, label="$x_1$")
ax.plot(t, x2, label="$x_2$")
ax.plot(ty, y, label="$x_1\\star x_2$")
ax.legend(loc='best')
ax.grid(True)

fg.canvas.draw()