Python NetworkX - 根据属性选项的数量自动设置节点颜色

时间:2015-03-07 02:36:59

标签: python matplotlib networkx

我正在使用NetworkX来分析和可视化社交网络。通常,网络内的节点具有与它们相关联的属性信息,例如划分。但是,我并不总是知道属性划分可能有多少选项。例如,有时在网络中可能只有3个分区表示为节点属性,有时可能有30个分区。

我已经弄清楚如何根据节点属性设置节点颜色(参见下面的代码)。但是,在此示例中,我知道节点属性组(5个选项)的选项有多不同,并自动设置每种颜色。

当节点属性只有3或5个选项时,选择节点属性颜色并不困难,但是当有更多选项时,这变得不切实际。

我想知道的是如何根据提供的节点属性选项的数量自动选择最佳节点属性颜色。

有时候我有5个属性可以选择颜色,有时候我可能有30个选项让节点属性颜色依旧,而且我不想单独设置每个节点的颜色。 / strong>

我不确定这是否应该能够用colormap函数执行,或者如果仅通过数字度量(例如度数中心度)用于颜色节点。

NETWORKX代码

import networkx as nx

pylab inline

# create an empty graph
g = nx.Graph()

# open csv edgelist and read edges into graph
for line in open('phils_network_edgelist.csv', 'rb'):
    edge = line.rstrip().split(',')
    g.add_edge(edge[0], edge[1])

# draw network without node color
nx.draw(g, with_labels=False, node_size=25)

network without node attribute color

# read in node attributes as list of tuples
group_attr = []
for line in open('phils_network_attribute_group.csv', 'rb'):
    group_attr.append(tuple(line.rstrip().split(',')))

# convert list of tuples into a dict
group_attr_dict = dict(set(sorted(group_attr)))

# set nodes attributes
nx.set_node_attributes(g, "group", group_attr_dict)

# create empty list for node colors
node_color = []

# for each node in the graph
for node in g.nodes(data=True):

    # if the node has the attribute group1
    if 'group1' in node[1]['group']:
        node_color.append('blue')

    # if the node has the attribute group1
    elif 'group2' in node[1]['group']:
        node_color.append('red')

    # if the node has the attribute group1
    elif 'group3' in node[1]['group']:
        node_color.append('green')

    # if the node has the attribute group1
    elif 'group4' in node[1]['group']:
        node_color.append('yellow')

    # if the node has the attribute group1
    elif 'group5' in node[1]['group']:
        node_color.append('orange')  

# draw graph with node attribute color
nx.draw(g, with_labels=False, node_size=25, node_color=node_color)

network with node attribute color

网络数据

In[58]: 

g.nodes(data=True)

Out[58]:

[('BD', {'group': 'group5'}),
 ('WC', {'group': 'group3'}),
 ('BA', {'group': 'group4'}),
 ('WM', {'group': 'group3'}),
 ('JR', {'group': 'group1'}),
 ('JS', {'group': 'group3'}),
 ('JL', {'group': 'group4'}),
 ('JM', {'group': 'group2'}),
 ('JK', {'group': 'group2'}),
 ('JF', {'group': 'group2'}),
 ('JG', {'group': 'group2'}),
 ('JA', {'group': 'group2'}),
 ('JB', {'group': 'group4'}),
 ('JC', {'group': 'group4'}),
 ('RR', {'group': 'group3'}),
 ('RS', {'group': 'group3'}),
 ('TTI', {'group': 'group3'}),
 ('RB', {'group': 'group1'}),
 ('RL', {'group': 'group3'}),
 ('RO', {'group': 'group4'}),
 ('LHA', {'group': 'group2'}),
 ('LHI', {'group': 'group1'}),
 ('GF', {'group': 'group2'}),
 ('GB', {'group': 'group4'}),
 ('EM', {'group': 'group2'}),
 ('HR', {'group': 'group5'}),
 ('BS', {'group': 'group3'}),
 ('HH', {'group': 'group4'}),
 ('HA', {'group': 'group1'}),
 ('PS', {'group': 'group1'}),
 ('PW', {'group': 'group1'}),
 ('PB', {'group': 'group1'}),
 ('PC', {'group': 'group5'}),
 ('MFR', {'group': 'group4'}),
 ('JMA', {'group': 'group5'}),
 ('PN', {'group': 'group4'}),
 ('PL', {'group': 'group3'}),
 ('ZL', {'group': 'group4'}),
 ('EB', {'group': 'group2'}),
 ('ET', {'group': 'group3'}),
 ('EW', {'group': 'group1'}),
 ('ER', {'group': 'group3'}),
 ('MF', {'group': 'group3'}),
 ('MA', {'group': 'group4'}),
 ('MM', {'group': 'group2'}),
 ('MN', {'group': 'group4'}),
 ('MH', {'group': 'group3'}),
 ('MK', {'group': 'group2'}),
 ('JLA', {'group': 'group2'}),
 ('MP', {'group': 'group1'}),
 ('MS', {'group': 'group4'}),
 ('MR', {'group': 'group4'}),
 ('FI', {'group': 'group5'}),
 ('CJ', {'group': 'group4'}),
 ('CO', {'group': 'group5'}),
 ('CM', {'group': 'group4'}),
 ('CB', {'group': 'group2'}),
 ('CG', {'group': 'group2'}),
 ('CF', {'group': 'group5'}),
 ('CD', {'group': 'group3'}),
 ('CS', {'group': 'group2'}),
 ('CP', {'group': 'group2'}),
 ('CV', {'group': 'group2'}),
 ('KC', {'group': 'group1'}),
 ('KB', {'group': 'group3'}),
 ('SY', {'group': 'group2'}),
 ('KF', {'group': 'group2'}),
 ('KD', {'group': 'group3'}),
 ('KH', {'group': 'group1'}),
 ('SW', {'group': 'group1'}),
 ('KL', {'group': 'group2'}),
 ('KP', {'group': 'group3'}),
 ('KW', {'group': 'group1'}),
 ('SM', {'group': 'group2'}),
 ('SB', {'group': 'group4'}),
 ('DJ', {'group': 'group2'}),
 ('DD', {'group': 'group2'}),
 ('DV', {'group': 'group5'}),
 ('BJ', {'group': 'group3'}),
 ('DR', {'group': 'group2'}),
 ('KWI', {'group': 'group4'}),
 ('TW', {'group': 'group2'}),
 ('TT', {'group': 'group2'}),
 ('LH', {'group': 'group3'}),
 ('LW', {'group': 'group3'}),
 ('TM', {'group': 'group3'}),
 ('LS', {'group': 'group3'}),
 ('LP', {'group': 'group2'}),
 ('TG', {'group': 'group3'}),
 ('JCU', {'group': 'group2'}),
 ('AL', {'group': 'group1'}),
 ('AP', {'group': 'group3'}),
 ('AS', {'group': 'group3'}),
 ('IM', {'group': 'group4'}),
 ('AW', {'group': 'group3'}),
 ('HHI', {'group': 'group1'})]

In [59]:

g.edges(data=True)

Out[59]:

[('BD', 'ZL', {}),
 ('BD', 'JCU', {}),
 ('BD', 'DJ', {}),
 ('BD', 'BA', {}),
 ('BD', 'CB', {}),
 ('BD', 'CG', {}),
 ('BD', 'AS', {}),
 ('BD', 'MH', {}),
 ('BD', 'AP', {}),
 ('BD', 'HH', {}),
 ('BD', 'TM', {}),
 ('BD', 'CF', {}),
 ('BD', 'CP', {}),
 ('BD', 'DR', {}),
 ('BD', 'CV', {}),
 ('BD', 'EB', {}),
 ('WC', 'JCU', {}),
 ('WC', 'JS', {}),
 ('BA', 'JR', {}),
 ('BA', 'JB', {}),
 ('BA', 'RR', {}),
 ('BA', 'RS', {}),
 ('BA', 'LH', {}),
 ('BA', 'PC', {}),
 ('BA', 'TTI', {}),
 ('BA', 'PL', {}),
 ('BA', 'JCU', {}),
 ('BA', 'CF', {}),
 ('BA', 'EB', {}),
 ('BA', 'GF', {}),
 ('BA', 'AS', {}),
 ('BA', 'IM', {}),
 ('BA', 'BJ', {}),
 ('BA', 'CS', {}),
 ('BA', 'KH', {}),
 ('BA', 'SW', {}),
 ('BA', 'MH', {}),
 ('BA', 'MR', {}),
 ('BA', 'HHI', {}),
 ('WM', 'EM', {}),
 ('WM', 'JCU', {}),
 ('WM', 'CO', {}),
 ('WM', 'LP', {}),
 ('WM', 'AW', {}),
 ('WM', 'KD', {}),
 ('WM', 'TT', {}),
 ('WM', 'JS', {}),
 ('WM', 'PB', {}),
 ('WM', 'JM', {}),
 ('WM', 'MFR', {}),
 ('WM', 'RB', {}),
 ('WM', 'MR', {}),
 ('WM', 'DV', {}),
 ('WM', 'TG', {}),
 ('WM', 'JF', {}),
 ('WM', 'JMA', {}),
 ('WM', 'FI', {}),
 ('WM', 'JB', {}),
 ('JR', 'GF', {}),
 ('JR', 'MFR', {}),
 ('JR', 'KH', {}),
 ('JR', 'JB', {}),
 ('JS', 'EM', {}),
 ('JS', 'PS', {}),
 ('JS', 'MF', {}),
 ('JS', 'JCU', {}),
 ('JS', 'KD', {}),
 ('JS', 'MH', {}),
 ('JS', 'TTI', {}),
 ('JS', 'RB', {}),
 ('JS', 'TG', {}),
 ('JL', 'KB', {}),
 ('JL', 'MN', {}),
 ('JL', 'LW', {}),
 ('JL', 'CS', {}),
 ('JL', 'ET', {}),
 ('JL', 'ER', {}),
 ('JM', 'EM', {}),
 ('JM', 'PS', {}),
 ('JM', 'KD', {}),
 ('JM', 'CD', {}),
 ('JM', 'JK', {}),
 ('JM', 'TG', {}),
 ('JM', 'RO', {}),
 ('JM', 'CV', {}),
 ('JK', 'HR', {}),
 ('JK', 'PS', {}),
 ('JF', 'EM', {}),
 ('JF', 'PS', {}),
 ('JF', 'LP', {}),
 ('JF', 'LHA', {}),
 ('JF', 'CD', {}),
 ('JF', 'RB', {}),
 ('JF', 'JG', {}),
 ('JF', 'KF', {}),
 ('JG', 'CJ', {}),
 ('JG', 'SY', {}),
 ('JG', 'KF', {}),
 ('JG', 'LHA', {}),
 ('JG', 'CD', {}),
 ('JG', 'RB', {}),
 ('JG', 'BS', {}),
 ('JA', 'CS', {}),
 ('JB', 'KC', {}),
 ('JB', 'JCU', {}),
 ('JB', 'MA', {}),
 ('JB', 'AW', {}),
 ('JB', 'KWI', {}),
 ('JB', 'KH', {}),
 ('JB', 'CF', {}),
 ('JB', 'EB', {}),
 ('JB', 'PB', {}),
 ('JB', 'MFR', {}),
 ('JB', 'KW', {}),
 ('JB', 'RB', {}),
 ('JB', 'MR', {}),
 ('JB', 'RL', {}),
 ('JB', 'FI', {}),
 ('JB', 'JMA', {}),
 ('JC', 'SM', {}),
 ('RR', 'MS', {}),
 ('RR', 'SW', {}),
 ('RR', 'LH', {}),
 ('RS', 'LH', {}),
 ('TTI', 'JCU', {}),
 ('TTI', 'SW', {}),
 ('TTI', 'CF', {}),
 ('RB', 'EM', {}),
 ('RB', 'PS', {}),
 ('RB', 'SY', {}),
 ('RB', 'JCU', {}),
 ('RB', 'KD', {}),
 ('RB', 'CF', {}),
 ('RB', 'LHI', {}),
 ('RB', 'CD', {}),
 ('RB', 'MH', {}),
 ('RB', 'CJ', {}),
 ('RB', 'TG', {}),
 ('RB', 'EB', {}),
 ('RO', 'PS', {}),
 ('LHA', 'CJ', {}),
 ('LHA', 'SY', {}),
 ('LHA', 'KF', {}),
 ('LHA', 'CD', {}),
 ('LHI', 'PS', {}),
 ('LHI', 'CJ', {}),
 ('GF', 'KC', {}),
 ('GF', 'MA', {}),
 ('GB', 'HR', {}),
 ('GB', 'MM', {}),
 ('GB', 'LS', {}),
 ('EM', 'LP', {}),
 ('EM', 'DV', {}),
 ('EM', 'TG', {}),
 ('HR', 'MM', {}),
 ('HR', 'MH', {}),
 ('HR', 'EB', {}),
 ('HR', 'LS', {}),
 ('BS', 'CD', {}),
 ('HH', 'ZL', {}),
 ('HH', 'CB', {}),
 ('HH', 'CP', {}),
 ('HH', 'DR', {}),
 ('HH', 'CV', {}),
 ('HA', 'SM', {}),
 ('PS', 'KD', {}),
 ('PS', 'CF', {}),
 ('PS', 'TG', {}),
 ('PW', 'CM', {}),
 ('PW', 'TW', {}),
 ('PW', 'TT', {}),
 ('PW', 'MH', {}),
 ('PW', 'AL', {}),
 ('PW', 'MP', {}),
 ('PW', 'CS', {}),
 ('PW', 'HHI', {}),
 ('PW', 'EW', {}),
 ('PB', 'CO', {}),
 ('PB', 'KH', {}),
 ('PB', 'CF', {}),
 ('PB', 'MFR', {}),
 ('PB', 'AW', {}),
 ('PB', 'MA', {}),
 ('PC', 'CS', {}),
 ('PC', 'JCU', {}),
 ('PC', 'SW', {}),
 ('MFR', 'KC', {}),
 ('MFR', 'JCU', {}),
 ('MFR', 'KH', {}),
 ('MFR', 'MH', {}),
 ('MFR', 'MR', {}),
 ('JMA', 'KWI', {}),
 ('JMA', 'AW', {}),
 ('PN', 'SB', {}),
 ('PL', 'HHI', {}),
 ('PL', 'MK', {}),
 ('PL', 'LH', {}),
 ('ZL', 'CB', {}),
 ('ZL', 'AP', {}),
 ('ZL', 'CP', {}),
 ('ZL', 'DR', {}),
 ('ZL', 'CV', {}),
 ('EB', 'JCU', {}),
 ('EB', 'DJ', {}),
 ('EB', 'CM', {}),
 ('EB', 'SW', {}),
 ('EB', 'MM', {}),
 ('EB', 'LS', {}),
 ('EB', 'CS', {}),
 ('EB', 'CP', {}),
 ('EB', 'CV', {}),
 ('ET', 'LW', {}),
 ('ET', 'ER', {}),
 ('ET', 'KB', {}),
 ('EW', 'TW', {}),
 ('EW', 'TT', {}),
 ('EW', 'HHI', {}),
 ('EW', 'AL', {}),
 ('ER', 'LW', {}),
 ('ER', 'KB', {}),
 ('MA', 'KW', {}),
 ('MA', 'AW', {}),
 ('MA', 'MR', {}),
 ('MM', 'LS', {}),
 ('MH', 'JCU', {}),
 ('MH', 'SY', {}),
 ('MH', 'DJ', {}),
 ('MH', 'CM', {}),
 ('MH', 'AL', {}),
 ('MH', 'SW', {}),
 ('MH', 'CF', {}),
 ('MH', 'LS', {}),
 ('MH', 'CS', {}),
 ('MH', 'TG', {}),
 ('MH', 'CP', {}),
 ('MH', 'CV', {}),
 ('MK', 'LH', {}),
 ('MK', 'KL', {}),
 ('MK', 'JLA', {}),
 ('MK', 'MS', {}),
 ('MK', 'CS', {}),
 ('JLA', 'CM', {}),
 ('JLA', 'KL', {}),
 ('JLA', 'MS', {}),
 ('JLA', 'CS', {}),
 ('JLA', 'SB', {}),
 ('JLA', 'HHI', {}),
 ('MP', 'TW', {}),
 ('MP', 'TT', {}),
 ('MP', 'HHI', {}),
 ('MS', 'CS', {}),
 ('MS', 'HHI', {}),
 ('FI', 'KW', {}),
 ('FI', 'AW', {}),
 ('FI', 'CF', {}),
 ('CJ', 'SY', {}),
 ('CJ', 'DD', {}),
 ('CJ', 'CD', {}),
 ('CO', 'AW', {}),
 ('CM', 'TW', {}),
 ('CM', 'TT', {}),
 ('CM', 'AL', {}),
 ('CM', 'CS', {}),
 ('CB', 'DJ', {}),
 ('CB', 'CP', {}),
 ('CB', 'CV', {}),
 ('CG', 'CF', {}),
 ('CF', 'JCU', {}),
 ('CF', 'AW', {}),
 ('CF', 'KH', {}),
 ('CF', 'LH', {}),
 ('CF', 'AP', {}),
 ('CF', 'AS', {}),
 ('CF', 'KW', {}),
 ('CF', 'CS', {}),
 ('CF', 'CV', {}),
 ('CD', 'SY', {}),
 ('CD', 'LP', {}),
 ('CD', 'KF', {}),
 ('CS', 'JCU', {}),
 ('CS', 'TW', {}),
 ('CS', 'TT', {}),
 ('CS', 'AS', {}),
 ('CS', 'LH', {}),
 ('CS', 'SB', {}),
 ('CS', 'HHI', {}),
 ('CP', 'DJ', {}),
 ('CP', 'AP', {}),
 ('CP', 'DR', {}),
 ('CP', 'CV', {}),
 ('CV', 'DJ', {}),
 ('CV', 'AP', {}),
 ('CV', 'DR', {}),
 ('KB', 'LW', {}),
 ('SY', 'KF', {}),
 ('KF', 'AP', {}),
 ('KD', 'TG', {}),
 ('SW', 'BJ', {}),
 ('SW', 'IM', {}),
 ('SW', 'LH', {}),
 ('KL', 'TT', {}),
 ('KP', 'TM', {}),
 ('KW', 'JCU', {}),
 ('SB', 'AL', {}),
 ('DJ', 'TG', {}),
 ('BJ', 'IM', {}),
 ('KWI', 'AW', {}),
 ('TW', 'TT', {}),
 ('TW', 'AL', {}),
 ('TW', 'HHI', {}),
 ('TT', 'AL', {}),
 ('TT', 'HHI', {}),
 ('LH', 'JCU', {}),
 ('JCU', 'AP', {}),
 ('JCU', 'AS', {}),
 ('AL', 'HHI', {})]

1 个答案:

答案 0 :(得分:17)

以下是如何使用色彩映射的示例。这有点棘手。如果您想要一个自定义的离散色图,您可以尝试这个SO答案Matplotlib discrete colorbar

import matplotlib.pyplot as plt
# create number for each group to allow use of colormap
from itertools import count
# get unique groups
groups = set(nx.get_node_attributes(g,'group').values())
mapping = dict(zip(sorted(groups),count()))
nodes = g.nodes()
colors = [mapping[g.node[n]['group']] for n in nodes]]

# drawing nodes and edges separately so we can capture collection for colobar
pos = nx.spring_layout(g)
ec = nx.draw_networkx_edges(g, pos, alpha=0.2)
nc = nx.draw_networkx_nodes(g, pos, nodelist=nodes, node_color=colors, 
                            with_labels=False, node_size=100, cmap=plt.cm.jet)
plt.colorbar(nc)
plt.axis('off')
plt.show()

enter image description here