我有一个大的3d numpy数组,每个切片(2d数组)我想写出一个类似于imshow的数字(即值的热图)。作为一个具体的例子,假设阵列的形状是3x3x3000,所以我想要3000个图像,每个图像代表一个3x3矩阵。用单个线程循环它有点慢。由于迭代是完全独立的,我想使用多处理模块来加速它。代码如下。
def write_tensor_image(t_slice_wrapper):
idx = t_slice_wrapper['idx']
t_slice = t_slice_wrapper['t_slice']
folder_path=t_slice_wrapper['folder_path']
fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(111)
ax.imshow(t_slice,interpolation='none')
fig.tight_layout()
fname_ = os.path.join(folder_path,'tmp_%s.png'%str(idx))
fig.savefig(fname_, bbox_inches="tight")
def write_tensor_image_sequence(tensor, folder_path='/home/foo/numpy_cache'):
os.system('mkdir -p %s'%folder_path)
os.system('rm -rf %s/*'%folder_path)
slices = [None]*tensor.shape[2]
for i in range(0,tensor.shape[2]):
slices[i] = {'t_slice':tensor[:,:,i], 'idx':i, 'folder_path':folder_path}
pool = multiprocessing.Pool(processes=4)
pool.map(write_tensor_image, slices)
pool.close()
pool.join()
但是这不起作用 - 单线程情况工作正常(只是在for循环中调用write_tensor_image())但是使用该池会导致机器完全锁定或者出现类似以下错误:
XIO: fatal IO error 11 (Resource temporarily unavailable) on X server ":0"
after 849 requests (849 known processed) with 28 events remaining.
XIO: fatal IO error 11 (Resource temporarily unavailable) on X server ":0"
XIO: fatal IO error 11 (Resource temporarily unavailable) on X server ":0"
after 849 requests (849 known processed) with 28 events remaining.
after 849 requests (849 known processed) with 28 events remaining.
X Error of failed request: BadPixmap (invalid Pixmap parameter)
Major opcode of failed request: 54 (X_FreePixmap)
Resource id in failed request: 0x4e0001e
Serial number of failed request: 851
Current serial number in output stream: 851
我认为我走在正确的轨道上(例如How to fix the python multiprocessing matplotlib savefig() issue?和Matplotlib: simultaneous plotting in multiple threads),但我必须遗漏一些东西。
答案 0 :(得分:2)
在脚本的头部做一个matplotlib.use('agg')
。 Matplotlib似乎试图在每个子流程中建立一个GUI,它们彼此冲突。
更一般地说,在您没有进行标准交互式绘图的情况下,您可能不想使用pyplot界面,而是使用OOP界面。