简而言之,numpy.sum(a, axis=None)
对数组的所有单元格求和,但对数据帧的行求和。我认为pandas.DataFrame
建立在numpy.array
之上,不应该有这种不同的行为?什么是引擎盖下的转换?
a1 = numpy.random.random((3,2))
a2 = pandas.DataFrame(a1)
numpy.sum(a1) # Sums all cells
numpy.sum(a2) # Sums over rows
答案 0 :(得分:1)
好的以下是我的pdb调试会话的转储,它显示了这在pandas land中的结果:
In [*]:
a1 = np.random.random((3,2))
import pdb
a2 = pd.DataFrame(a1)
print(np.sum(a1)) # Sums all cells
pdb.set_trace()
np.sum(a2) # Sums over rows
3.02993889742
--Return--
> <ipython-input-50-92405dd4ed52>(5)<module>()->None
-> pdb.set_trace()
(Pdb) b 6
Breakpoint 2 at <ipython-input-50-92405dd4ed52>:6
(Pdb) c
> <ipython-input-50-92405dd4ed52>(6)<module>()->None
-> np.sum(a2) # Sums over rows
(Pdb) s
--Call--
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\numpy\core\fromnumeric.py(1623)sum()
-> def sum(a, axis=None, dtype=None, out=None, keepdims=False):
(Pdb) print(axis)
None
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\numpy\core\fromnumeric.py(1700)sum()
-> if isinstance(a, _gentype):
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\numpy\core\fromnumeric.py(1706)sum()
-> elif type(a) is not mu.ndarray:
(Pdb) sssssss
*** NameError: name 'sssssss' is not defined
(Pdb) ss
*** NameError: name 'ss' is not defined
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\numpy\core\fromnumeric.py(1707)sum()
-> try:
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\numpy\core\fromnumeric.py(1708)sum()
-> sum = a.sum
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\numpy\core\fromnumeric.py(1713)sum()
-> return sum(axis=axis, dtype=dtype, out=out)
(Pdb) print(axis)
None
(Pdb) s
--Call--
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\pandas\core\generic.py(3973)stat_func()
-> @Substitution(outname=name, desc=desc)
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\pandas\core\generic.py(3977)stat_func()
-> if skipna is None:
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\pandas\core\generic.py(3978)stat_func()
-> skipna = True
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\pandas\core\generic.py(3979)stat_func()
-> if axis is None:
(Pdb) s
> c:\winpython-64bit-3.4.2.4\python-3.4.2.amd64\lib\site-packages\pandas\core\generic.py(3980)stat_func()
-> axis = self._stat_axis_number
(Pdb) print(self._stat_axis_number)
0
(Pdb)
所以基本上一旦它最终出现在大熊猫的土地上,就会有一些完整性检查,其中一个是axis is None
,然后它会从self._stat_axis_number
分配0
的值。{{1}因此,行为的差异。我不是大熊猫开发者,所以他们可以对此有所了解,但这解释了输出的差异
为了获得相同的输出,您必须两次调用sum
:
In [6]:
a2.sum(axis=0).sum()
Out[6]:
3.9180334059883006
或者
In [7]:
np.sum(np.sum(a2))
Out[7]:
3.9180334059883006