InsertTypes<Pack, P<Ts...>, Is...>::type
包含分别插入位置Ts...
的{{1}}类型。
例如,
Is...
是
InsertTypes<Pack<int, double, char, long, int>, Pack<short, float, std::string>, 2,4,1>::type,
(在double和char之间插入short,在long和int之间插入float,在int和double之间插入std :: string)。
我的方法:首先以相反的顺序(从大到小)对Pack<int, std::string, double, short, char, long, float, int
进行排序,并为Is...
中的每个类型应用Insert,并在Ts...
中为每个int应用Insert为什么反向排序{ {1}}?因为如果它们不是那个顺序,插入一个类型会使位置偏离一个并弄乱其他插入。但是我的计划存在缺陷,我将在稍后解释。首先让我提供我编写的辅助函数,我测试它可以自己正常工作:
Is...
是包Is...
,其中T插入位置N。
Insert<T, P<Types...>, N>::type
现在ReverseSortIntSequence(使用快速排序):
P<Types...>
现在template <typename, typename, typename, int> struct InsertHelper;
template <typename T, template <typename...> class P, typename First, typename... Rest, typename... Accumulated>
struct InsertHelper<T, P<First, Rest...>, P<Accumulated...>, 0> {
using type = P<Accumulated..., T, First, Rest...>;
};
template <typename T, template <typename...> class P, typename First, typename... Rest, typename... Accumulated, int N>
struct InsertHelper<T, P<First, Rest...>, P<Accumulated...>, N> : InsertHelper<T, P<Rest...>, P<Accumulated..., First>, N-1> {};
template <typename, typename, int> struct Insert;
template <typename T, template <typename...> class P, typename... Types, int N>
struct Insert<T, P<Types...>, N> : InsertHelper<T, P<Types...>, P<>, N> {};
本身:
template <int, typename> struct PrependInt;
template <int N, template <int...> class Z, int... Is>
struct PrependInt<N, Z<Is...>> {
using type = Z<N, Is...>;
};
template <template<int> class, typename> struct FilterInts;
template <template<int> class F, template <int...> class Z, int I, int... Is>
struct FilterInts<F, Z<I, Is...>> {
using type = typename std::conditional<F<I>::value,
typename PrependInt<I, typename FilterInts<F, Z<Is...>>::type>::type,
typename FilterInts<F, Z<Is...>>::type
>::type;
};
template <template<int> class F, template <int...> class Z>
struct FilterInts<F, Z<>> {
using type = Z<>;
};
template <typename, typename> struct MergeIntSequences;
template <template <int...> class Z, int... Is, int... Js>
struct MergeIntSequences<Z<Is...>, Z<Js...>> {
using type = Z<Is..., Js...>;
};
template <typename> struct ReverseSortIntSequence;
template <template <int...> class Z, int N, int... Is>
struct ReverseSortIntSequence<Z<N, Is...>> {
template<int I> struct less_than : std::integral_constant<bool, (I >= N)> {};
template <int I> struct more_than : std::integral_constant<bool, (I < N)> {};
using subsequence_less_than_N = typename FilterInts<less_than, Z<Is...>>::type;
using subsequence_more_than_N = typename FilterInts<more_than, Z<Is...>>::type;
using type = typename MergeIntSequences<typename ReverseSortIntSequence<subsequence_less_than_N>::type,
typename PrependInt<N, typename ReverseSortIntSequence<subsequence_more_than_N>::type>::type
>::type;
};
template<template <int...> class Z>
struct ReverseSortIntSequence<Z<>> {
using type = Z<>;
};
现在,我的测试:
InsertTypes
我上面得到了错误,因为尽管(*)和(**)在上面是真的,我们必须以相同的方式置换template <typename, typename, typename> struct InsertTypesHelper;
template <typename Pack, template <typename...> class P, template <int...> class Z>
struct InsertTypesHelper<Pack, P<>, Z<>> {
using type = Pack;
};
template <typename Pack, template <typename...> class P, typename First, typename... Rest, template <int...> class Z, int N, int... Ns>
struct InsertTypesHelper<Pack, P<First, Rest...>, Z<N, Ns...>> : InsertTypesHelper<typename Insert<First, Pack, N>::type, P<Rest...>, Z<Ns...>> {};
template <typename, typename, int...> struct InsertTypes;
template <typename Pack, template <typename...> class P, typename... Types, int... Is>
struct InsertTypes<Pack, P<Types...>, Is...> : InsertTypesHelper<Pack, P<Types...>, typename ReverseSortIntSequence<index_sequence<Is...>>::type> {};
2,4,1被置换以便以反向排序顺序获得。我可以继续这个修复,但现在它已经过火了。我仍然会继续这样做,但我非常怀疑有一个更好的方法,也可能相当短。
这里有什么好主意吗?我想提取索引确定的类型对(插入的类型将在对之间),但如果原始包中存在重复类型(并且也因为插入的类型),这将不起作用。
更新: 我完成了上面讨论的排列助手,现在一切正常。但是,必须有比这更糟糕的更好更短的解决方案。
int main() {
std::cout << std::is_same<
typename ReverseSortIntSequence<index_sequence<5,10,8,4,0,2,1,2,7,8,3>>::type,
index_sequence<10,8,8,7,5,4,3,2,2,1,0>
>::value << std::endl; // true
std::cout << std::is_same<
InsertTypesHelper<Pack<int, double, char, long, int>, Pack<float, short, std::string>, index_sequence<4,2,1>>::type,
Pack<int, std::string, double, short, char, long, float, int>
>::value << std::endl; // true (*)
std::cout << std::is_same<
typename ReverseSortIntSequence<index_sequence<2,4,1>>::type,
index_sequence<4,2,1>
>::value << std::endl; // true (**)
std::cout << std::is_same<
InsertTypes<Pack<int, double, char, long, int>, Pack<short, float, std::string>, 2,4,1>::type,
Pack<int, std::string, double, short, char, long, float, int>
>::value << std::endl; // false (rats!)
}
答案 0 :(得分:1)
这要归功于Yakk上面的快速建议。现在我们有一个很好的优雅解决方案!
#include <iostream>
#include <string>
template <typename, typename, typename, int> struct InsertIntoPackOfPacksHelper;
template <typename T, template <typename...> class P, typename First, typename... Rest, typename... Accumulated>
struct InsertIntoPackOfPacksHelper<T, P<P<First>, Rest...>, P<Accumulated...>, 0> {
using type = P<Accumulated..., P<T, First>, Rest...>;
};
template <typename T, template <typename...> class P, typename First, typename... Rest, typename... Accumulated, int N>
struct InsertIntoPackOfPacksHelper<T, P<First, Rest...>, P<Accumulated...>, N> : InsertIntoPackOfPacksHelper<T, P<Rest...>, P<Accumulated..., First>, N-1> {};
template <typename, typename, int> struct InsertIntoPackOfPacks;
template <typename T, template <typename...> class P, typename... Types, int N>
struct InsertIntoPackOfPacks<T, P<Types...>, N> : InsertIntoPackOfPacksHelper<T, P<Types...>, P<>, N> {};
template <typename, typename>
struct FlattenPackHelper;
template <template <typename...> class P, template <typename...> class P2, typename... Ts, typename... Us, typename... Rest>
struct FlattenPackHelper<P<Ts...>, P<P2<Us...>, Rest...>> : FlattenPackHelper<P<Ts...>, P<Us..., Rest...>> {};
template <template <typename...> class P, typename... Ts, typename First, typename... Rest>
struct FlattenPackHelper<P<Ts...>, P<First, Rest...>> : FlattenPackHelper<P<Ts..., First>, P<Rest...>> {};
template <template <typename...> class P, typename... Ts, typename... Rest>
struct FlattenPackHelper<P<Ts...>, P<std::string, Rest...>> : FlattenPackHelper<P<Ts..., std::string>, P<Rest...>> {};
template <template <typename...> class P, typename... Ts>
struct FlattenPackHelper<P<Ts...>, P<>> {
using type = P<Ts...>;
};
template <typename T> struct FlattenPack;
template <template <typename...> class P, typename... Ts>
struct FlattenPack<P<Ts...>> : FlattenPackHelper<P<>, P<Ts...>> {};
template <typename, typename, typename> struct InsertTypesHelper;
template <typename PackOfPacks, template <typename...> class P, template <int...> class Z>
struct InsertTypesHelper<PackOfPacks, P<>, Z<>> {
using type = PackOfPacks;
};
template <typename PackOfPacks, template <typename...> class P, typename First, typename... Rest, template <int...> class Z, int I, int... Is>
struct InsertTypesHelper<PackOfPacks, P<First, Rest...>, Z<I, Is...>> :
InsertTypesHelper<typename InsertIntoPackOfPacks<First, PackOfPacks, I>::type, P<Rest...>, Z<Is...>> {};
template <typename, typename, int...> struct InsertTypes;
template <int...> struct index_sequence {};
template <template <typename...> class P, typename... Types, typename... Ts, int... Is>
struct InsertTypes<P<Types...>, P<Ts...>, Is...> {
using type = typename FlattenPack<typename InsertTypesHelper<P<P<Types>...>, P<Ts...>, index_sequence<Is...>>::type>::type;
};
// Testing
template <typename...> struct Pack {};
int main() {
std::cout << std::boolalpha << std::is_same<
InsertTypes<Pack<int, double, char, long, int>, Pack<short, float, std::string>, 2,4,1>::type,
Pack<int, std::string, double, short, char, long, float, int>
>::value << std::endl; // true
}
对于它的价值,这里是与原始问题中概述的原始的,非常长的解决方案的比较:
#include <iostream>
#include <string>
// ReverseSortIntSequence (using quicksort):
template <int, typename> struct PrependInt;
template <int N, template <int...> class Z, int... Is>
struct PrependInt<N, Z<Is...>> {
using type = Z<N, Is...>;
};
template <template<int> class, typename> struct FilterInts;
template <template<int> class F, template <int...> class Z, int I, int... Is>
struct FilterInts<F, Z<I, Is...>> {
using type = typename std::conditional<F<I>::value,
typename PrependInt<I, typename FilterInts<F, Z<Is...>>::type>::type,
typename FilterInts<F, Z<Is...>>::type
>::type;
};
template <template<int> class F, template <int...> class Z>
struct FilterInts<F, Z<>> {
using type = Z<>;
};
template <typename, typename> struct MergeIntSequences;
template <template <int...> class Z, int... Is, int... Js>
struct MergeIntSequences<Z<Is...>, Z<Js...>> {
using type = Z<Is..., Js...>;
};
template <int I, int J>
struct IntLessThan : std::conditional<(I < J), std::true_type, std::false_type>::type {};
template <typename, template <int, int> class = IntLessThan> struct SortIntSequence;
template <template <int...> class Z, int N, int... Is, template <int, int> class Comparator>
struct SortIntSequence<Z<N, Is...>, Comparator> {
template<int I> struct less_than : std::integral_constant<bool, Comparator<I,N>::value> {};
template <int I> struct more_than : std::integral_constant<bool, Comparator<N,I>::value || I == N> {};
using subsequence_less_than_N = typename FilterInts<less_than, Z<Is...>>::type;
using subsequence_more_than_N = typename FilterInts<more_than, Z<Is...>>::type;
using type = typename MergeIntSequences<typename SortIntSequence<subsequence_less_than_N, Comparator>::type,
typename PrependInt<N, typename SortIntSequence<subsequence_more_than_N, Comparator>::type>::type
>::type;
};
template<template <int...> class Z, template <int, int> class Comparator>
struct SortIntSequence<Z<>, Comparator> {
using type = Z<>;
};
// Given Pack, Z<Is...>, Z<Js...>, rearrange Pack in the same way that Z<Is...> is rearranged to get Z<Js...>. PermutePack will take care of this.
template <int, typename> struct NthType;
template <int N, template <typename...> class P, typename First, typename... Rest>
struct NthType<N, P<First, Rest...>> : NthType<N-1, P<Rest...>> {};
template <template <typename...> class P, typename First, typename... Rest>
struct NthType<0, P<First, Rest...>> {
using type = First;
};
template <int, int, typename> struct FindIndexOfIntHelper;
template <int N, int FindMe, template <int...> class Z, int... Rest>
struct FindIndexOfIntHelper<N, FindMe, Z<FindMe, Rest...>> : std::integral_constant<int, N> {};
template <int N, int FindMe, template <int...> class Z>
struct FindIndexOfIntHelper<N, FindMe, Z<>> : std::integral_constant<int, -1> {}; // Not found.
template <int N, int FindMe, template <int...> class Z, int First, int... Rest>
struct FindIndexOfIntHelper<N, FindMe, Z<First, Rest...>> : FindIndexOfIntHelper<N+1, FindMe, Z<Rest...>> {};
template <int FindMe, typename Pack>
using FindIndexOfInt = FindIndexOfIntHelper<0, FindMe, Pack>;
template <typename, typename, typename, typename> struct PermutePackHelper;
template <typename Pack, template <typename...> class P, typename... Accumulated, typename IndicesPack, template <int...> class Z>
struct PermutePackHelper<Pack, P<Accumulated...>, IndicesPack, Z<>> {
using type = P<Accumulated...>;
};
template <typename Pack, template <typename...> class P, typename... Accumulated, typename IndicesPack, template <int...> class Z, int I, int... Is>
struct PermutePackHelper<Pack, P<Accumulated...>, IndicesPack, Z<I, Is...>> :
PermutePackHelper<Pack, P<Accumulated..., typename NthType<FindIndexOfInt<I, IndicesPack>::value, Pack>::type>,
IndicesPack, Z<Is...>> {};
template <typename, typename, typename> struct PermutePack;
template <template <typename...> class P, typename... Types, template <int...> class Z, int... Is, int... Js>
struct PermutePack<P<Types...>, Z<Is...>, Z<Js...>> : PermutePackHelper<P<Types...>, P<>, Z<Is...>, Z<Js...>> {};
// Now InsertTypes itself.
template <typename, typename, typename, int> struct InsertHelper;
template <typename T, template <typename...> class P, typename First, typename... Rest, typename... Accumulated>
struct InsertHelper<T, P<First, Rest...>, P<Accumulated...>, 0> {
using type = P<Accumulated..., T, First, Rest...>;
};
template <typename T, template <typename...> class P, typename First, typename... Rest, typename... Accumulated, int N>
struct InsertHelper<T, P<First, Rest...>, P<Accumulated...>, N> : InsertHelper<T, P<Rest...>, P<Accumulated..., First>, N-1> {};
template <typename, typename, int> struct Insert;
template <typename T, template <typename...> class P, typename... Types, int N>
struct Insert<T, P<Types...>, N> : InsertHelper<T, P<Types...>, P<>, N> {};
template <typename, typename, typename> struct InsertTypesHelper;
template <typename Pack, template <typename...> class P, template <int...> class Z>
struct InsertTypesHelper<Pack, P<>, Z<>> {
using type = Pack;
};
template <typename Pack, template <typename...> class P, typename First, typename... Rest, template <int...> class Z, int N, int... Ns>
struct InsertTypesHelper<Pack, P<First, Rest...>, Z<N, Ns...>> : InsertTypesHelper<typename Insert<First, Pack, N>::type, P<Rest...>, Z<Ns...>> {};
template <typename, typename, int...> struct InsertTypes;
template <typename Pack1, typename Pack2, typename Sequence, typename ReverseSequence>
using InsertTypesHelperAlias = InsertTypesHelper<Pack1, typename PermutePack<Pack2, Sequence, ReverseSequence>::type, ReverseSequence>;
template <int I, int J>
struct IntGreaterThan : std::conditional<(I > J), std::true_type, std::false_type>::type {};
template <int...> struct index_sequence {};
template <typename Pack, template <typename...> class P, typename... Types, int... Is>
struct InsertTypes<Pack, P<Types...>, Is...> : InsertTypesHelperAlias<Pack, P<Types...>, index_sequence<Is...>, typename SortIntSequence<index_sequence<Is...>, IntGreaterThan>::type> {}; // SortIntSequence<index_sequence<Is...>, IntGreaterThan>::type is the reverse sort of index_sequence<Is...>.
// Testing
template <typename...> struct Pack {};
int main() {
std::cout << std::boolalpha << std::is_same<
InsertTypes<Pack<int, double, char, long, int>, Pack<short, float, std::string>, 2,4,1>::type,
Pack<int, std::string, double, short, char, long, float, int>
>::value << std::endl; // true
}
答案 1 :(得分:1)
使用boost::mpl
有一种方法可以做到这一点,我认为这有点容易消化(?)我添加了很多注释来解释步骤,并使用适当的缩进来使代码更清晰一点......可能有帮助...
#include <iostream>
#include <type_traits>
#include <boost/mpl/vector_c.hpp>
#include <boost/mpl/sort.hpp>
#include <boost/mpl/comparison.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/mpl/equal.hpp>
#include <boost/mpl/next_prior.hpp>
#include <boost/mpl/insert.hpp>
#include <boost/mpl/deref.hpp>
#include <boost/mpl/advance.hpp>
#include <boost/mpl/pair.hpp>
#include <boost/mpl/size.hpp>
#include <boost/mpl/transform.hpp>
using namespace boost::mpl;
template <typename R, typename It, typename End>
struct type_inserter
{
// index to insert
typedef typename deref<It>::type::first KType;
// type to insert
typedef typename deref<It>::type::second VType;
// recurse
typedef typename type_inserter<
typename insert<
R,
// calculate the location based on the index
typename advance<typename begin<R>::type, KType>::type,
VType
>::type,
typename next<It>::type,
End
>::type type;
};
template <typename R, typename End>
struct type_inserter<R, End, End>
{
typedef R type;
};
template <typename P>
struct index_access
{
typedef typename P::first type;
};
struct make_pair
{
template<typename Kv, typename Pv>
struct apply
{
typedef pair<Kv, Pv> type;
};
};
template <typename P1, typename P2, int ...I>
struct insert_pack
{
// transform P2 and indexes
static_assert(sizeof...(I) == size<P2>::value, "indexes/count P2 mismatch");
// this iterates through both sequences, constructing a pair and inserting into a vector
typedef typename transform<vector_c<int, I...>, P2, make_pair, back_inserter<vector0<>>>::type entries;
// sort the sequence by the index..
typedef typename sort<entries, greater<index_access<_1>, index_access<_2>>>::type reversed;
// once sorted, insert the sorted range into the main vector using custom inserter
typedef typename type_inserter<P1, typename begin<reversed>::type, typename end<reversed>::type>::type type;
};
int main()
{
typedef vector<int, double, char, long, int> pack1;
typedef vector<short, float, std::string> pack2;
// this combines the pack
typedef insert_pack<pack1, pack2, 2, 4, 1>::type combined;
// this is what we expect
typedef vector<int, std::string, double, short, char, long, float, int> packs;
// sanity check
BOOST_MPL_ASSERT(( equal< packs, combined> ));
}