可以解释Haskell中的lambda演算:
data Expr = Var String | Lam String Expr | App Expr Expr
data Value a = V a | F (Value a -> Value a)
interpret :: [(String, Value a)] -> Expr -> Value a
interpret env (Var x) = case lookup x env of
Nothing -> error "undefined variable"
Just v -> v
interpret env (Lam x e) = F (\v -> interpret ((x, v):env) e)
interpret env (App e1 e2) = case interpret env e1 of
V _ -> error "not a function"
F f -> f (interpret env e2)
如何将上述解释器扩展到lambda-mu calculus?我的猜测是它应该使用continuation来解释这个微积分中的其他结构。来自Bernardi&Moortgat paper的(15)和(16)是我期望的那种翻译。
因为Haskell是Turing-complete,但是如何?
提示:有关mu活页夹的直观含义,请参阅this research paper上第196页的评论。
答案 0 :(得分:5)
这是使用@ user2407038的表示从论文中删除规则的无意义音译(正如你所看到的,当我说无语时,我的意思是无意义):
{-# LANGUAGE DataKinds, KindSignatures, GADTs #-}
{-# LANGUAGE StandaloneDeriving #-}
import Control.Monad.Writer
import Control.Applicative
import Data.Monoid
data TermType = Named | Unnamed
type Var = String
type MuVar = String
data Expr (n :: TermType) where
Var :: Var -> Expr Unnamed
Lam :: Var -> Expr Unnamed -> Expr Unnamed
App :: Expr Unnamed -> Expr Unnamed -> Expr Unnamed
Freeze :: MuVar -> Expr Unnamed -> Expr Named
Mu :: MuVar -> Expr Named -> Expr Unnamed
deriving instance Show (Expr n)
substU :: Var -> Expr Unnamed -> Expr n -> Expr n
substU x e = go
where
go :: Expr n -> Expr n
go (Var y) = if y == x then e else Var y
go (Lam y e) = Lam y $ if y == x then e else go e
go (App f e) = App (go f) (go e)
go (Freeze alpha e) = Freeze alpha (go e)
go (Mu alpha u) = Mu alpha (go u)
renameN :: MuVar -> MuVar -> Expr n -> Expr n
renameN beta alpha = go
where
go :: Expr n -> Expr n
go (Var x) = Var x
go (Lam x e) = Lam x (go e)
go (App f e) = App (go f) (go e)
go (Freeze gamma e) = Freeze (if gamma == beta then alpha else gamma) (go e)
go (Mu gamma u) = Mu gamma $ if gamma == beta then u else go u
appN :: MuVar -> Expr Unnamed -> Expr n -> Expr n
appN beta v = go
where
go :: Expr n -> Expr n
go (Var x) = Var x
go (Lam x e) = Lam x (go e)
go (App f e) = App (go f) (go e)
go (Freeze alpha w) = Freeze alpha $ if alpha == beta then App (go w) v else go w
go (Mu alpha u) = Mu alpha $ if alpha /= beta then go u else u
reduceTo :: a -> Writer Any a
reduceTo x = tell (Any True) >> return x
reduce0 :: Expr n -> Writer Any (Expr n)
reduce0 (App (Lam x u) v) = reduceTo $ substU x v u
reduce0 (App (Mu beta u) v) = reduceTo $ Mu beta $ appN beta v u
reduce0 (Freeze alpha (Mu beta u)) = reduceTo $ renameN beta alpha u
reduce0 e = return e
reduce1 :: Expr n -> Writer Any (Expr n)
reduce1 (Var x) = return $ Var x
reduce1 (Lam x e) = reduce0 =<< (Lam x <$> reduce1 e)
reduce1 (App f e) = reduce0 =<< (App <$> reduce1 f <*> reduce1 e)
reduce1 (Freeze alpha e) = reduce0 =<< (Freeze alpha <$> reduce1 e)
reduce1 (Mu alpha u) = reduce0 =<< (Mu alpha <$> reduce1 u)
reduce :: Expr n -> Expr n
reduce e = case runWriter (reduce1 e) of
(e', Any changed) -> if changed then reduce e' else e
它“起作用”来自论文的例子:
example 0 = App (App t (Var "x")) (Var "y")
where
t = Lam "x" $ Lam "y" $ Mu "delta" $ Freeze "phi" $ App (Var "x") (Var "y")
example n = App (example (n-1)) (Var ("z_" ++ show n))
我可以将example n
缩减为预期结果:
*Main> reduce (example 10)
Mu "delta" (Freeze "phi" (App (Var "x") (Var "y")))
我在上面的“作品”中引用恐慌引用的原因是我对λμ演算没有直觉,所以我不知道它应该做什么。
答案 1 :(得分:3)
注意:这只是部分答案,因为我不确定如何扩展解释器。
这似乎是DataKinds的一个很好的用例。 Expr
数据类型在名为或未命名的类型上编制索引。常规lambda构造仅生成命名术语。
{-# LANGUAGE GADTs, DataKinds, KindSignatures #-}
data TermType = Named | Unnamed
type Var = String
type MuVar = String
data Expr (n :: TermType) where
Var :: Var -> Expr Unnamed
Lam :: Var -> Expr Unnamed -> Expr Unnamed
App :: Expr Unnamed -> Expr Unnamed -> Expr Unnamed
并且其他Mu
和Name
构造可以操纵TermType
。
...
Name :: MuVar -> Expr Unnamed -> Expr Named
Mu :: MuVar -> Expr Named -> Expr Unnamed
答案 2 :(得分:1)
如下所示。我对如何遍历Value a
并不了解,但至少我可以看到它将example n
评估为MuV
。
import Data.Maybe
type Var = String
type MuVar = String
data Expr = Var Var
| Lam Var Expr
| App Expr Expr
| Mu MuVar MuVar Expr
deriving Show
data Value a = ConV a
| LamV (Value a -> Value a)
| MuV (Value a -> Value a)
type Env a = [(Var, Value a)]
type MuEnv a = [(MuVar, Value a -> Value a)]
varScopeErr :: Var -> Value a
varScopeErr v = error $ unwords ["Out of scope λ variable:", show v]
appErr :: Value a
appErr = error "Trying to apply a non-lambda"
muVarScopeErr :: MuVar -> (Value a -> Value a)
muVarScopeErr alpha = id
app :: Value a -> Value a -> Value a
app (LamV f) x = f x
app (MuV f) x = MuV $ \y -> f x `app` y
app _ _ = appErr
eval :: Env a -> MuEnv a -> Expr -> Value a
eval env menv (Var v) = fromMaybe (varScopeErr v) $ lookup v env
eval env menv (Lam v e) = LamV $ \x -> eval ((v, x):env) menv e
eval env menv (Mu alpha beta e) = MuV $ \u ->
let menv' = (alpha, (`app` u)):menv
wrap = fromMaybe (muVarScopeErr beta) $ lookup beta menv'
in wrap (eval env menv' e)
eval env menv (App f e) = eval env menv f `app` eval env menv e
example 0 = App (App t (Var "v")) (Var "w")
where
t = Lam "x" $ Lam "y" $ Mu "delta" "phi" $ App (Var "x") (Var "y")
example n = App (example (n-1)) (Var ("z_" ++ show n))