我有一个像这样的pandas数据框:
+-----------+------------------+---------------+------------+
| AccountID | RegistrationWeek | Weekly_Visits | Visit_Week |
+-----------+------------------+---------------+------------+
| ACC1 | 2015-01-25 | 0 | NaT |
| ACC2 | 2015-01-11 | 0 | NaT |
| ACC3 | 2015-01-18 | 0 | NaT |
| ACC4 | 2014-12-21 | 14 | 2015-02-12 |
| ACC5 | 2014-12-21 | 5 | 2015-02-15 |
| ACC6 | 2014-12-21 | 0 | 2015-02-22 |
+-----------+------------------+---------------+------------+
它本质上是一种各种访问日志,因为它包含创建队列分析所需的所有数据。
每个注册周都是一个队列。 要知道我可以使用的人群中有多少人:
visit_log.groupby('RegistrationWeek').AccountID.nunique()
我想要做的是创建一个以注册周为键的数据透视表。列应为visit_weeks,值应为每周访问次数超过0次的唯一帐户ID的数量。
与每个队列中的总帐户一起,我将能够显示百分比而不是绝对值。
最终产品看起来像这样:
+-------------------+-------------+-------------+-------------+
| Registration Week | Visit_week1 | Visit_Week2 | Visit_week3 |
+-------------------+-------------+-------------+-------------+
| week1 | 70% | 30% | 20% |
| week2 | 70% | 30% | |
| week3 | 40% | | |
+-------------------+-------------+-------------+-------------+
我尝试像这样转动数据框:
visit_log.pivot_table(index='RegistrationWeek', columns='Visit_Week')
但我没有确定价值部分。我需要以某种方式计算帐户ID并将总和除以上面的注册周聚合。
我是熊猫新手,所以如果这不是保留队列的最佳方式,请赐教!
由于
答案 0 :(得分:17)
您的问题有几个方面。
使用您拥有的数据构建的内容
有several kinds of retention。为简单起见,我们只提两个:
如果我正确理解了您的表,您有两个相关变量来构建您的同期表:注册日期和上次日志(访问周)。每周访问次数似乎无关紧要。
因此,您只能使用选项2,滚动保留。
如何构建表格
首先,让我们构建一个虚拟数据集,以便我们有足够的工作,你可以重现它:
import pandas as pd
import numpy as np
import math
import datetime as dt
np.random.seed(0) # so that we all have the same results
def random_date(start, end,p=None):
# Return a date randomly chosen between two dates
if p is None:
p = np.random.random()
return start + dt.timedelta(seconds=math.ceil(p * (end - start).days*24*3600))
n_samples = 1000 # How many users do we want ?
index = range(1,n_samples+1)
# A range of signup dates, say, one year.
end = dt.datetime.today()
from dateutil.relativedelta import relativedelta
start = end - relativedelta(years=1)
# Create the dataframe
users = pd.DataFrame(np.random.rand(n_samples),
index=index, columns=['signup_date'])
users['signup_date'] = users['signup_date'].apply(lambda x : random_date(start, end,x))
# last logs randomly distributed within 10 weeks of singing up, so that we can see the retention drop in our table
users['last_log'] = users['signup_date'].apply(lambda x : random_date(x, x + relativedelta(weeks=10)))
所以现在我们应该有这样的东西:
users.head()
以下是构建群组表的一些代码:
### Some useful functions
def add_weeks(sourcedate,weeks):
return sourcedate + dt.timedelta(days=7*weeks)
def first_day_of_week(sourcedate):
return sourcedate - dt.timedelta(days = sourcedate.weekday())
def last_day_of_week(sourcedate):
return sourcedate + dt.timedelta(days=(6 - sourcedate.weekday()))
def retained_in_interval(users,signup_week,n_weeks,end_date):
'''
For a given list of users, returns the number of users
that signed up in the week of signup_week (the cohort)
and that are retained after n_weeks
end_date is just here to control that we do not un-necessarily fill the bottom right of the table
'''
# Define the span of the given week
cohort_start = first_day_of_week(signup_week)
cohort_end = last_day_of_week(signup_week)
if n_weeks == 0:
# If this is our first week, we just take the number of users that signed up on the given period of time
return len( users[(users['signup_date'] >= cohort_start)
& (users['signup_date'] <= cohort_end)])
elif pd.to_datetime(add_weeks(cohort_end,n_weeks)) > pd.to_datetime(end_date) :
# If adding n_weeks brings us later than the end date of the table (the bottom right of the table),
# We return some easily recognizable date (not 0 as it would cause confusion)
return float("Inf")
else:
# Otherwise, we count the number of users that signed up on the given period of time,
# and whose last known log was later than the number of weeks added (rolling retention)
return len( users[(users['signup_date'] >= cohort_start)
& (users['signup_date'] <= cohort_end)
& pd.to_datetime((users['last_log']) >= pd.to_datetime(users['signup_date'].map(lambda x: add_weeks(x,n_weeks))))
])
有了这个,我们可以创建实际的功能:
def cohort_table(users,cohort_number=6,period_number=6,cohort_span='W',end_date=None):
'''
For a given dataframe of users, return a cohort table with the following parameters :
cohort_number : the number of lines of the table
period_number : the number of columns of the table
cohort_span : the span of every period of time between the cohort (D, W, M)
end_date = the date after which we stop counting the users
'''
# the last column of the table will end today :
if end_date is None:
end_date = dt.datetime.today()
# The index of the dataframe will be a list of dates ranging
dates = pd.date_range(add_weeks(end_date,-cohort_number), periods=cohort_number, freq=cohort_span)
cohort = pd.DataFrame(columns=['Sign up'])
cohort['Sign up'] = dates
# We will compute the number of retained users, column-by-column
# (There probably is a more pythonesque way of doing it)
range_dates = range(0,period_number+1)
for p in range_dates:
# Name of the column
s_p = 'Week '+str(p)
cohort[s_p] = cohort.apply(lambda row: retained_in_interval(users,row['Sign up'],p,end_date), axis=1)
cohort = cohort.set_index('Sign up')
# absolute values to percentage by dividing by the value of week 0 :
cohort = cohort.astype('float').div(cohort['Week 0'].astype('float'),axis='index')
return cohort
现在您可以调用它并查看结果:
cohort_table(users)
希望有所帮助
答案 1 :(得分:0)
使用来自rom_j答案的相同格式的users
数据,这将更清晰/更快,但只有在每周至少有一次注册/流失时才有效。对足够大的数据并不是一个糟糕的假设。
users = users.applymap(lambda d: d.strftime('%Y-%m-%V') if pd.notnull(d) else d)
tab = pd.crosstab(signup_date, last_log)
totals = tab.T.sum()
retention_counts = ((tab.T.cumsum().T * -1)
.replace(0, pd.NaT)
.add(totals, axis=0)
)
retention = retention_counts.div(totals, axis=0)
realined = [retention.loc[a].dropna().values for a in retention.index]
realigned_retention = pd.DataFrame(realined, index=retention.index)