SVM OpenCV c ++预测除了1之外什么都不返回

时间:2015-02-19 12:53:39

标签: c++ opencv machine-learning svm image-recognition

我相信我已成功训练SVM,但当我尝试用它预测时,输出完全是1。

我的培训代码如下:

for(size_t i = 0; i < (testPosArraySize); i++){
    testGivenImg = imread(imagePosDir[i]);
    detector->detect(testGivenImg, testKeypointsPos);
    bowDE.compute(testGivenImg, testKeypointsPos, testFeaturesPos);
    testFeaturesPos.reshape(1, 1);
    testFeaturesVec.push_back(testFeaturesPos);
}
for(size_t i = 0; i < (testNegaArraySize); i++){
    testGivenImg = imread(image[i]);
    detector->detect(testGivenImg, testKeypointsNega);
    bowDE.compute(testGivenImg, testKeypointsNega, testFeaturesNega);
    testFeaturesNega.reshape(1, 1);
    testFeaturesVec.push_back(testFeaturesNega);
}

Mat labels(numSamples, 1, CV_32F);
labels.rowRange(0, testPosArraySize).setTo(1);
labels.rowRange(testPosArraySize + 1, numSamples).setTo(-1);
SVM.model.train(fileTestFeat, labels, Mat(), Mat(), SVMParams());

我的预测代码如下:

vector<Mat> predictMatVec(predictArraySize); // -- amount of testing images

for(size_t i = 0; i < (predictArraySize); i++){
    predictImg = imread(imageNegaDir[i]);
    detector->detect(predictImg, predictKeypoints);
    bowDE.compute(predictImg, predictKeypoints, predictFeatures);
    predictFeatures.reshape(1, 1);
    predictMatVec[i].push_back(predictFeatures);

    Mat predictMat = Mat(predictMatVec);
    float* predictFloat1D = (float*)predictMat.data;
    Mat predictMat1D(1, fileTestFeat.cols, CV_32FC1, predictFloat1D);
    float predictFloat = model.predict(predictMat1D);
    cout << " -- SVM output: " << predictFloat << endl; 
}

但它只返回1而已。

enter image description here

它出了什么问题?

1 个答案:

答案 0 :(得分:2)

所以,词汇表已经创建(例如BOWKMeansTrainer)并且你开始训练SVM分类器,对吗?

此时你有一个特征探测器,提取器,匹配器和一个BOW图像描述符提取器(使用视觉词袋来计算图像描述符),例如:

cv::Ptr<cv::FeatureDetector> detector = cv::FeatureDetector::create("SURF");
cv::Ptr<cv::DescriptorExtractor> extractor = cv::DescriptorExtractor::create("SURF");
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce ");

cv::BOWImgDescriptorExtractor bowide(extractor, matcher);
bowide->setVocabulary(vocabulary);

首先,我们需要搜索直方图的训练集:

cv::Mat samples;
cv::Mat labels(0, 1, CV_32FC1);

for(auto& it : imagePosDir)
{
    cv::Mat image = cv::imread(it);

    std::vector<cv::KeyPoint> keypoints;
    detector->detect(image, keypoints);

    if(keypoints.empty()) continue;

    // Responses to the vocabulary
    cv::Mat imgDescriptor;
    bowide.compute(image, keypoints, imgDescriptor);

    if(imgDescriptor.empty()) continue;

    if(samples.empty())
    {
        samples.create(0, imgDescriptor.cols, imgDescriptor.type());
    }

    // Copy class samples and labels
    std::cout << "Adding " << imgDescriptor.rows << " positive sample." << std::endl;
    samples.push_back(imgDescriptor);

    cv::Mat classLabels = cv::Mat::ones(imgDescriptor.rows, 1, CV_32FC1);
    labels.push_back(classLabels);
}

imagePosNeg执行相同操作,但classLabels的值为零,例如:

...
cv::Mat classLabels = cv::Mat::zeros(imgDescriptor.rows, 1, CV_32FC1);
labels.push_back(classLabels);
...

请注意我是如何构建样本和标签的,我使用标签&#39; 1&#39;标记了正样本,然后使用标签&#39; 0&#39;标记了底片。因此,我们在samples中提供了每个班级的培训数据(此处为正面和负面)。让我们接受培训:

cv::Mat samples_32f; 
samples.convertTo(samples_32f, CV_32F);

CvSVM svm; 
svm.train(samples_32f, labels);
// Do something with the classifier, like saving it to file

然后测试让我们测试分类器:

for(auto& it : testDir)
{
    cv::Mat image = cv::imread(it);

    std::vector<cv::KeyPoint> keypoints;
    detector->detect(image, keypoints);

    if(keypoints.empty()) continue;

    // Responses to the vocabulary
    cv::Mat imgDescriptor;
    bowide.compute(image, keypoints, imgDescriptor);

    if(imgDescriptor.empty()) continue;

    float res = svm.predict(imgDescriptor, true);

    std::cout << "- Result of prediction: " << res << std::endl;
}

有效吗?


更新#1:

这里我在OpenCV 3.0下做了一个关于BOW + SVM的简单例子: https://github.com/bkornel/OpenCV_BOW_SVM/blob/master/main.cpp

这对我可口可乐/百事可乐瓶的分类很有帮助。我还发布了二进制文件,因此您可以尝试使用数据库。希望它有效:)