绘制风玫瑰(IndexError:列表索引超出范围)

时间:2015-02-18 15:13:08

标签: python

我正在尝试使用以下代码绘制风玫瑰。它曾经在几个月前工作。

import sys
from windrose import WindroseAxes
from matplotlib import pyplot as plt
import matplotlib.cm as cm
from numpy.random import random
from numpy import arange
import os
import numpy as np

def plot(prefix, spds, dirs):
    ws = np.array(spds)
    wd = np.array(dirs)

    def new_axes():
        fig = plt.figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w')
        rect = [0.1, 0.1, 0.8, 0.8]
        ax = WindroseAxes(fig, rect, axisbg='w')
        fig.add_axes(ax)
        return ax, fig

    def set_legend(ax):
        l = ax.legend(axespad=-0.10, title="m/s", loc=0)
        plt.setp(l.get_texts(), fontsize=8)

    # windrose like a stacked histogram with normed (displayed in percent) results
    ax, fig = new_axes()
    ax.bar(wd, ws, normed=True, opening=0.8, edgecolor='white', bins=arange(0,max(ws),5))
    set_legend(ax)
    tokens = prefix.split("/")[-1].split("_")
    if tokens[0] == "Dust":
        title = "%s Dust" % tokens[1]
    else:
        title = tokens[0]

    plt.title(title, y=1.08)
    fig.savefig("%s-fig1.png" % prefix)

def main(folder="data"):    
    for filename in filter(lambda x:x.endswith(".csv"), os.listdir(folder)):
        path = "%s/%s" % (folder, filename)
        plot_path = "%s/plots" % folder
        if not os.path.exists(plot_path):
            os.mkdir(plot_path)
        print path
        f = open(path)
        f.readline()
        directions = []
        speeds = []
        for line in f:
            cols = line.split(",")    
            direction = cols[5]
            speed = cols[6]
            try:
                direction = int(direction)
                speed = int(speed) * 0.44704
            except:
                continue

            directions.append(direction)
            speeds.append(speed)

        plot("%s/plots/%s" % (folder, filename.split(".")[0]), speeds, directions)

if __name__ == "__main__":
    main(sys.argv[1])

但是当我运行它时,我收到了这个错误:

IndexError                                Traceback (most recent call last)
/Users/Abdulhaleem-Labban/Dropbox/windrose/process.py in <module>()
    112 
    113 if __name__ == "__main__":
--> 114     main(sys.argv[1])
    115 

IndexError: list index out of range 

包含绘制风玫瑰所需数据的文件称为Dust_TabukWI_Wind.csv。这是一个样本:

Tabuk   YR--    MO  DA  HRMN    DIR SPD VSB MW
403750  1985    1   1   1125    240 28  0.4 32
403750  1985    1   18  1200    230 34  0.1 33
403750  1985    12  18  600     120 14  6.2 30
403750  1988    11  30  1300    340 34  0.3 32
403750  1992    12  15  900     240 31  0.3 33
403750  1992    12  15  1000    240 29  0.3 33
403750  1992    12  15  1100    240 29  0.6 33
403750  2008    1   29  1100    220 29  0.6 31
403750  2008    1   29  1200    210 34  3.1 30
403750  2008    1   29  1300    210 34  1.9 31

我认为这是具有&#34; argv&#34;但我该怎么办呢?

#!/usr/bin/env python
# -*- coding: utf-8 -*-

__version__ = '1.4'
__author__ = 'Lionel Roubeyrie'
__mail__ = 'lionel.roubeyrie@gmail.com'
__license__ = 'CeCILL-B'

import matplotlib
import matplotlib.cm as cm
import numpy as np
from matplotlib.patches import Rectangle, Polygon
from matplotlib.ticker import ScalarFormatter, AutoLocator
from matplotlib.text import Text, FontProperties
from matplotlib.projections.polar import PolarAxes
from numpy.lib.twodim_base import histogram2d
import matplotlib.pyplot as plt
from pylab import poly_between

RESOLUTION = 100
ZBASE = -1000 #The starting zorder for all drawing, negative to have the grid on

class WindroseAxes(PolarAxes):
    """

    Create a windrose axes

    """

    def __init__(self, *args, **kwargs):
        """
        See Axes base class for args and kwargs documentation
        """

        #Uncomment to have the possibility to change the resolution directly 
        #when the instance is created
        #self.RESOLUTION = kwargs.pop('resolution', 100)
        PolarAxes.__init__(self, *args, **kwargs)
        self.set_aspect('equal', adjustable='box', anchor='C')
        self.radii_angle = 67.5
        self.cla()


    def cla(self):
        """
        Clear the current axes
        """
        PolarAxes.cla(self)

        self.theta_angles = np.arange(0, 360, 45)
        self.theta_labels = ['E', 'N-E', 'N', 'N-W', 'W', 'S-W', 'S', 'S-E']
        self.set_thetagrids(angles=self.theta_angles, labels=self.theta_labels)

        self._info = {'dir' : list(),
                      'bins' : list(),
                      'table' : list()}

        self.patches_list = list()


    def _colors(self, cmap, n):
        '''
        Returns a list of n colors based on the colormap cmap

        '''
        return [cmap(i) for i in np.linspace(0.0, 1.0, n)]


    def set_radii_angle(self, **kwargs):
        """
        Set the radii labels angle
        """

        null = kwargs.pop('labels', None)
        angle = kwargs.pop('angle', None)
        if angle is None:
            angle = self.radii_angle
        self.radii_angle = angle
        print self.get_rmax()
        radii = np.linspace(0.1, self.get_rmax(), 6)
        radii_labels = [ "%.1f%%" %r for r in radii ]
        radii_labels[0] = "" #Removing label 0
#        radii_labels = ["" for r in radii]
        null = self.set_rgrids(radii=radii, labels=radii_labels,
                               angle=self.radii_angle, **kwargs)


    def _update(self):
        self.set_rmax(rmax=np.max(np.sum(self._info['table'], axis=0)))
        self.set_radii_angle(angle=self.radii_angle)


    def legend(self, loc='lower left', **kwargs):
        """
        Sets the legend location and her properties.
        The location codes are

          'best'         : 0,
          'upper right'  : 1,
          'upper left'   : 2,
          'lower left'   : 3,
          'lower right'  : 4,
          'right'        : 5,
          'center left'  : 6,
          'center right' : 7,
          'lower center' : 8,
          'upper center' : 9,
          'center'       : 10,

        If none of these are suitable, loc can be a 2-tuple giving x,y
        in axes coords, ie,

          loc = (0, 1) is left top
          loc = (0.5, 0.5) is center, center

        and so on.  The following kwargs are supported:

        isaxes=True           # whether this is an axes legend
        prop = FontProperties(size='smaller')  # the font property
        pad = 0.2             # the fractional whitespace inside the legend border
        shadow                # if True, draw a shadow behind legend
        labelsep = 0.005     # the vertical space between the legend entries
        handlelen = 0.05     # the length of the legend lines
        handletextsep = 0.02 # the space between the legend line and legend text
        axespad = 0.02       # the border between the axes and legend edge
        """

        def get_handles():
            handles = list()
            for p in self.patches_list:
                if isinstance(p, matplotlib.patches.Polygon) or \
                isinstance(p, matplotlib.patches.Rectangle):
                    color = p.get_facecolor()
                elif isinstance(p, matplotlib.lines.Line2D):
                    color = p.get_color()
                else:
                    raise AttributeError("Can't handle patches")
                handles.append(Rectangle((0, 0), 0.2, 0.2,
                    facecolor=color, edgecolor='black'))
            return handles

        def get_labels():
            labels = np.copy(self._info['bins'])
            labels = ["[%.1f : %0.1f[" %(labels[i], labels[i+1]) \
                      for i in range(len(labels)-1)]
            return labels    
null = kwargs.pop('labels', None)
            null = kwargs.pop('handles', None)
            handles = get_handles()
            labels = get_labels()
            self.legend_ = matplotlib.legend.Legend(self, handles, labels,
                                                    loc, **kwargs)
            return self.legend_


        def _init_plot(self, dir, var, **kwargs):
            """
            Internal method used by all plotting commands
            """
            #self.cla()
            null = kwargs.pop('zorder', None)

            #Init of the bins array if not set
            bins = kwargs.pop('bins', None)
            if bins is None:
                bins = np.linspace(np.min(var), np.max(var), 6)
            if isinstance(bins, int):
                #bins = np.linspace(np.min(var), np.max(var), bins)
                bins = [0.0,5.0,10.0,15.0,20.0,25.0,30.0,35.0,40.0]
            bins = np.asarray(bins)
            nbins = len(bins)

            #Number of sectors
            nsector = kwargs.pop('nsector', None)
            if nsector is None:
                nsector = 16

            #Sets the colors table based on the colormap or the "colors" argument
            colors = kwargs.pop('colors', None)
            cmap = kwargs.pop('cmap', None)
            if colors is not None:
                if isinstance(colors, str):
                    colors = [colors]*nbins
                if isinstance(colors, (tuple, list)):
                    if len(colors) != nbins:
                        raise ValueError("colors and bins must have same length")
            else:
                if cmap is None:
                    cmap = cm.jet
                colors = self._colors(cmap, nbins)

            #Building the angles list
            angles = np.arange(0, -2*np.pi, -2*np.pi/nsector) + np.pi/2

            normed = kwargs.pop('normed', False)
            blowto = kwargs.pop('blowto', False)

            #Set the global information dictionnary
            self._info['dir'], self._info['bins'], self._info['table'] = histogram(dir, var, bins, nsector, normed, blowto)

            return bins, nbins, nsector, colors, angles, kwargs


        def contour(self, dir, var, **kwargs):
            """
            Plot a windrose in linear mode. For each var bins, a line will be
            draw on the axes, a segment between each sector (center to center).
            Each line can be formated (color, width, ...) like with standard plot
            pylab command.

            Mandatory:
            * dir : 1D array - directions the wind blows from, North centred
            * var : 1D array - values of the variable to compute. Typically the wind
            speeds
            Optional:
            * nsector: integer - number of sectors used to compute the windrose
            table. If not set, nsectors=16, then each sector will be 360/16=22.5°,
            and the resulting computed table will be aligned with the cardinals
            points.
            * bins : 1D array or integer- number of bins, or a sequence of
            bins variable. If not set, bins=6, then
                bins=linspace(min(var), max(var), 6)
            * blowto : bool. If True, the windrose will be pi rotated,
            to show where the wind blow to (usefull for pollutant rose).
            * colors : string or tuple - one string color ('k' or 'black'), in this
            case all bins will be plotted in this color; a tuple of matplotlib
            color args (string, float, rgb, etc), different levels will be plotted
            in different colors in the order specified.
            * cmap : a cm Colormap instance from matplotlib.cm.
              - if cmap == None and colors == None, a default Colormap is used.

            others kwargs : see help(pylab.plot)

            """

            bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var,
                                                                           **kwargs)

            #closing lines
            angles = np.hstack((angles, angles[-1]-2*np.pi/nsector))
            vals = np.hstack((self._info['table'],
                             np.reshape(self._info['table'][:,0],
                                       (self._info['table'].shape[0], 1))))

            offset = 0
            for i in range(nbins):
                val = vals[i,:] + offset
                offset += vals[i, :]
                zorder = ZBASE + nbins - i
                patch = self.plot(angles, val, color=colors[i], zorder=zorder,
                                  **kwargs)
                self.patches_list.extend(patch)
            self._update()


        def contourf(self, dir, var, **kwargs):
            """
            Plot a windrose in filled mode. For each var bins, a line will be
            draw on the axes, a segment between each sector (center to center).
            Each line can be formated (color, width, ...) like with standard plot
            pylab command.

            Mandatory:
            * dir : 1D array - directions the wind blows from, North centred
            * var : 1D array - values of the variable to compute. Typically the wind
            speeds
            Optional:
            * nsector: integer - number of sectors used to compute the windrose
            table. If not set, nsectors=16, then each sector will be 360/16=22.5°,
            and the resulting computed table will be aligned with the cardinals
            points.
            * bins : 1D array or integer- number of bins, or a sequence of
            bins variable. If not set, bins=6, then
                bins=linspace(min(var), max(var), 6)
            * blowto : bool. If True, the windrose will be pi rotated,
            to show where the wind blow to (usefull for pollutant rose).
            * colors : string or tuple - one string color ('k' or 'black'), in this
            case all bins will be plotted in this color; a tuple of matplotlib
            color args (string, float, rgb, etc), different levels will be plotted
            in different colors in the order specified.
            * cmap : a cm Colormap instance from matplotlib.cm.
              - if cmap == None and colors == None, a default Colormap is used.

            others kwargs : see help(pylab.plot)

            """

            bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var,
                                                                           **kwargs)
            null = kwargs.pop('facecolor', None)
            null = kwargs.pop('edgecolor', None)

            #closing lines
            angles = np.hstack((angles, angles[-1]-2*np.pi/nsector))
            vals = np.hstack((self._info['table'],
                             np.reshape(self._info['table'][:,0],
                                       (self._info['table'].shape[0], 1))))
            offset = 0
            for i in range(nbins):
                val = vals[i,:] + offset
                offset += vals[i, :]
                zorder = ZBASE + nbins - i
                xs, ys = poly_between(angles, 0, val)
                patch = self.fill(xs, ys, facecolor=colors[i],
                                  edgecolor=colors[i], zorder=zorder, **kwargs)
                self.patches_list.extend(patch)


        def bar(self, dir, var, **kwargs):
            """
            Plot a windrose in bar mode. For each var bins and for each sector,
            a colored bar will be draw on the axes.

            Mandatory:
            * dir : 1D array - directions the wind blows from, North centred
            * var : 1D array - values of the variable to compute. Typically the wind
            speeds
            Optional:
            * nsector: integer - number of sectors used to compute the windrose
            table. If not set, nsectors=16, then each sector will be 360/16=22.5°,
            and the resulting computed table will be aligned with the cardinals
            points.
            * bins : 1D array or integer- number of bins, or a sequence of
            bins variable. If not set, bins=6 between min(var) and max(var).
            * blowto : bool. If True, the windrose will be pi rotated,
            to show where the wind blow to (usefull for pollutant rose).
            * colors : string or tuple - one string color ('k' or 'black'), in this
            case all bins will be plotted in this color; a tuple of matplotlib
            color args (string, float, rgb, etc), different levels will be plotted
            in different colors in the order specified.
            * cmap : a cm Colormap instance from matplotlib.cm.
              - if cmap == None and colors == None, a default Colormap is used.
            edgecolor : string - The string color each edge bar will be plotted.
            Default : no edgecolor
            * opening : float - between 0.0 and 1.0, to control the space between
            each sector (1.0 for no space)

            """

            bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var,
                                                                           **kwargs)
            null = kwargs.pop('facecolor', None)
            edgecolor = kwargs.pop('edgecolor', None)
            if edgecolor is not None:
                if not isinstance(edgecolor, str):
                    raise ValueError('edgecolor must be a string color')
            opening = kwargs.pop('opening', None)
            if opening is None:
                opening = 0.8
            dtheta = 2*np.pi/nsector
            opening = dtheta*opening

            for j in range(nsector):
                offset = 0
                for i in range(nbins):
                    if i > 0:
                        offset += self._info['table'][i-1, j]
                    val = self._info['table'][i, j]
                    zorder = ZBASE + nbins - i
                    patch = Rectangle((angles[j]-opening/2, offset), opening, val,
                        facecolor=colors[i], edgecolor=edgecolor, zorder=zorder,
                        **kwargs)
                    self.add_patch(patch)
                    if j == 0:
                        self.patches_list.append(patch)
            self._update()


        def box(self, dir, var, **kwargs):
            """
            Plot a windrose in proportional bar mode. For each var bins and for each
            sector, a colored bar will be draw on the axes.

            Mandatory:
            * dir : 1D array - directions the wind blows from, North centred
            * var : 1D array - values of the variable to compute. Typically the wind
            speeds
            Optional:
            * nsector: integer - number of sectors used to compute the windrose
            table. If not set, nsectors=16, then each sector will be 360/16=22.5°,
            and the resulting computed table will be aligned with the cardinals
            points.
            * bins : 1D array or integer- number of bins, or a sequence of
            bins variable. If not set, bins=6 between min(var) and max(var).
            * blowto : bool. If True, the windrose will be pi rotated,
            to show where the wind blow to (usefull for pollutant rose).
            * colors : string or tuple - one string color ('k' or 'black'), in this
            case all bins will be plotted in this color; a tuple of matplotlib
            color args (string, float, rgb, etc), different levels will be plotted
            in different colors in the order specified.
            * cmap : a cm Colormap instance from matplotlib.cm.
              - if cmap == None and colors == None, a default Colormap is used.
            edgecolor : string - The string color each edge bar will be plotted.
            Default : no edgecolor

            """

            bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var,
                                                                           **kwargs)
            null = kwargs.pop('facecolor', None)
            edgecolor = kwargs.pop('edgecolor', None)
            if edgecolor is not None:
                if not isinstance(edgecolor, str):
                    raise ValueError('edgecolor must be a string color')
            opening = np.linspace(0.0, np.pi/16, nbins)

            for j in range(nsector):
                offset = 0
                for i in range(nbins):
                    if i > 0:
                        offset += self._info['table'][i-1, j]
                    val = self._info['table'][i, j]
                    zorder = ZBASE + nbins - i
                    patch = Rectangle((angles[j]-opening[i]/2, offset), opening[i],
                        val, facecolor=colors[i], edgecolor=edgecolor,
                        zorder=zorder, **kwargs)
                    self.add_patch(patch)
                    if j == 0:
                        self.patches_list.append(patch)
            self._update()

    def histogram(dir, var, bins, nsector, normed=False, blowto=False):
        """
        Returns an array where, for each sector of wind
        (centred on the north), we have the number of time the wind comes with a
        particular var (speed, polluant concentration, ...).
        * dir : 1D array - directions the wind blows from, North centred
        * var : 1D array - values of the variable to compute. Typically the wind
            speeds
        * bins : list - list of var category against we're going to compute the table
        * nsector : integer - number of sectors
        * normed : boolean - The resulting table is normed in percent or not.
        * blowto : boolean - Normaly a windrose is computed with directions
        as wind blows from. If true, the table will be reversed (usefull for
        pollutantrose)

        """

        if len(var) != len(dir):
            raise ValueError, "var and dir must have same length"

        angle = 360./nsector

        dir_bins = np.arange(-angle/2 ,360.+angle, angle, dtype=np.float)
        dir_edges = dir_bins.tolist()
        dir_edges.pop(-1)
        dir_edges[0] = dir_edges.pop(-1)
        dir_bins[0] = 0.

        var_bins = bins.tolist()
        var_bins.append(np.inf)

        if blowto:
            dir = dir + 180.
            dir[dir>=360.] = dir[dir>=360.] - 360

        table = histogram2d(x=var, y=dir, bins=[var_bins, dir_bins],
                              normed=False)[0]
        # add the last value to the first to have the table of North winds
        table[:,0] = table[:,0] + table[:,-1]
        # and remove the last col
        table = table[:, :-1]
        if normed:
            table = table*100/table.sum()

        return dir_edges, var_bins, table


    def wrcontour(dir, var, **kwargs):
        fig = plt.figure()
        rect = [0.1, 0.1, 0.8, 0.8]
        ax = WindroseAxes(fig, rect)
        fig.add_axes(ax)
        ax.contour(dir, var, **kwargs)
        l = ax.legend(axespad=-0.10)
        plt.setp(l.get_texts(), fontsize=8)
        plt.draw()
        plt.show()
        return ax

    def wrcontourf(dir, var, **kwargs):
        fig = plt.figure()
        rect = [0.1, 0.1, 0.8, 0.8]
        ax = WindroseAxes(fig, rect)
        fig.add_axes(ax)
        ax.contourf(dir, var, **kwargs)
        l = ax.legend(axespad=-0.10)
        plt.setp(l.get_texts(), fontsize=8)
        plt.draw()
        plt.show()
        return ax

    def wrbox(dir, var, **kwargs):
        fig = plt.figure()
        rect = [0.1, 0.1, 0.8, 0.8]
        ax = WindroseAxes(fig, rect)
        fig.add_axes(ax)
        ax.box(dir, var, **kwargs)
        l = ax.legend(axespad=-0.10)
        plt.setp(l.get_texts(), fontsize=8)
        plt.draw()
        plt.show()
        return ax

    def wrbar(dir, var, **kwargs):
        fig = plt.figure()
        rect = [0.1, 0.1, 0.8, 0.8]
        ax = WindroseAxes(fig, rect)
        fig.add_axes(ax)
        ax.bar(dir, var, **kwargs)
        l = ax.legend(axespad=-0.10)
        plt.setp(l.get_texts(), fontsize=8)
        plt.draw()
        plt.show()
        return ax

    def clean(dir, var):
        '''
        Remove masked values in the two arrays, where if a direction data is masked,
        the var data will also be removed in the cleaning process (and vice-versa)
        '''
        dirmask = dir.mask==False
        varmask = var.mask==False
        ind = dirmask*varmask
        return dir[ind], var[ind]

    if __name__=='__main__':
        from pylab import figure, show, setp, random, grid, draw
        vv=random(500)*6
        dv=random(500)*360
        fig = figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w')
        rect = [0.1, 0.1, 0.8, 0.8]
        ax = WindroseAxes(fig, rect, axisbg='w')
        fig.add_axes(ax)

    #    ax.contourf(dv, vv, bins=np.arange(0,8,1), cmap=cm.hot)
    #    ax.contour(dv, vv, bins=np.arange(0,8,1), colors='k')
    #    ax.bar(dv, vv, normed=True, opening=0.8, edgecolor='white')
        ax.box(dv, vv, normed=True)
        l = ax.legend(axespad=-0.10)
        setp(l.get_texts(), fontsize=8)
        draw()
        #print ax._info
        show()

1 个答案:

答案 0 :(得分:2)

sys.argv是命令行参数的列表sys.argv[0]是命令本身,sys.argv[1]是第一个参数,等等。如果没有参数,只需命令sys.argv只有一个元素sys.argv[0],试图阅读sys.argv[1]超出范围。

通常情况下,如果您的程序需要参数,请检查并打印一条用法消息:

if __name__ == "__main__":
    if len(sys.argv) < 2:
        sys.stderr.write("Usage: {0} <data-path>\n".format(sys.argv[0]))
        sys.exit(1)

    main(sys.argv[1])