我想将一个对象从驱动程序节点传递到RDD所在的其他节点,以便RDD的每个分区都可以访问该对象,如下面的代码段所示。
object HelloSpark {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName("Testing HelloSpark")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.set("spark.kryo.registrator", "xt.HelloKryoRegistrator")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 20, 4)
val bytes = new ImmutableBytesWritable(Bytes.toBytes("This is a test"))
rdd.map(x => x.toString + "-" + Bytes.toString(bytes.get) + " !")
.collect()
.foreach(println)
sc.stop
}
}
// My registrator
class HelloKryoRegistrator extends KryoRegistrator {
override def registerClasses(kryo: Kryo) = {
kryo.register(classOf[ImmutableBytesWritable], new HelloSerializer())
}
}
//My serializer
class HelloSerializer extends Serializer[ImmutableBytesWritable] {
override def write(kryo: Kryo, output: Output, obj: ImmutableBytesWritable): Unit = {
output.writeInt(obj.getLength)
output.writeInt(obj.getOffset)
output.writeBytes(obj.get(), obj.getOffset, obj.getLength)
}
override def read(kryo: Kryo, input: Input, t: Class[ImmutableBytesWritable]): ImmutableBytesWritable = {
val length = input.readInt()
val offset = input.readInt()
val bytes = new Array[Byte](length)
input.read(bytes, offset, length)
new ImmutableBytesWritable(bytes)
}
}
在上面的代码片段中,我尝试在Spark中通过Kryo序列化 ImmutableBytesWritable ,所以我做了以下操作:
但是,当我在yarn-client模式下提交Spark应用程序时,抛出了以下异常:
线程“main”中的异常org.apache.spark.SparkException:任务不可序列化 在org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:166) 在org.apache.spark.util.ClosureCleaner $ .clean(ClosureCleaner.scala:158) 在org.apache.spark.SparkContext.clean(SparkContext.scala:1242) 在org.apache.spark.rdd.RDD.map(RDD.scala:270) 在xt.HelloSpark $ .main(HelloSpark.scala:23) 在xt.HelloSpark.main(HelloSpark.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) 在org.apache.spark.deploy.SparkSubmit $ .launch(SparkSubmit.scala:325) 在org.apache.spark.deploy.SparkSubmit $ .main(SparkSubmit.scala:75) 在org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 引起:java.io.NotSerializableException:org.apache.hadoop.hbase.io.ImmutableBytesWritable at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347) 在org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) 在org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73) 在org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:164) ......还有12个
Kryo似乎无法序列化 ImmutableBytesWritable 。那么让Spark使用Kryo序列化对象的正确方法是什么? Kryo可以序列化任何类型吗?
答案 0 :(得分:1)
这种情况正在发生,因为您在关闭时使用了ImmutableBytesWritable
。 Spark不支持使用Kryo进行闭包序列化(仅限RDD中的对象)。你可以借助这个来解决你的问题:
您只需要在通过闭包之前序列化对象,然后再反序列化。即使您的类不是Serializable,这种方法也可以正常工作,因为它在幕后使用Kryo。你需要的只是一些咖喱。 ;)
这是一个示例草图:
def genMapper(kryoWrapper: KryoSerializationWrapper[(Foo => Bar)])
(foo: Foo) : Bar = {
kryoWrapper.value.apply(foo)
}
val mapper = genMapper(KryoSerializationWrapper(new ImmutableBytesWritable(Bytes.toBytes("This is a test")))) _
rdd.flatMap(mapper).collectAsMap()
object ImmutableBytesWritable(bytes: Bytes) extends (Foo => Bar) {
def apply(foo: Foo) : Bar = { //This is the real function }
}