我想知道如何加快以下功能,例如:用Cython?
def groupby_maxtarget(df, group, target):
df_grouped = df.groupby([group]).apply(lambda row: row[row[target]==row[target].max()])
return df_grouped
此功能按单列分组,并返回每个组的目标达到其最大值的所有行;返回结果数据框。
如果df有500K行,则上述功能大约需要5分钟才能完成。这个性能还可以,但我有超过1000万行的数据...当然,一个解决方案是在SQL服务器中执行上面的查询并让Python检索结果,但我希望有一个SQL-免费,Pythonic解决方案。
答案 0 :(得分:4)
In [22]: pd.set_option('max_rows',20)
In [33]: N = 10000000
In [34]: df = DataFrame({'A' : np.random.randint(0,100,size=N), 'B' : np.random.randint(0,100,size=N)})
In [35]: df[df.groupby('A')['B'].transform('max') == df['B']]
Out[35]:
A B
161 30 99
178 53 99
264 58 99
337 96 99
411 44 99
428 85 99
500 84 99
598 98 99
602 24 99
684 31 99
... .. ..
9999412 25 99
9999482 35 99
9999502 6 99
9999537 24 99
9999579 65 99
9999680 32 99
9999713 74 99
9999886 90 99
9999887 57 99
9999991 45 99
[100039 rows x 2 columns]
In [36]: %timeit df[df.groupby('A')['B'].transform('max') == df['B']]
1 loops, best of 3: 1.85 s per loop
请注意,这与组数成正比,但系数非常小。例如。我做100x组,速度只有2x。变换在广播时非常有效。
In [8]: G = 100
In [9]: df = DataFrame({'A' : np.random.randint(0,G,size=N), 'B' : np.random.randint(0,G,size=N)})
In [10]: %timeit df[df.groupby('A')['B'].transform('max') == df['B']]
1 loops, best of 3: 1.86 s per loop
In [11]: G = 10000
In [12]: df = DataFrame({'A' : np.random.randint(0,G,size=N), 'B' : np.random.randint(0,G,size=N)})
In [13]: %timeit df[df.groupby('A')['B'].transform('max') == df['B']]
1 loops, best of 3: 3.95 s per loop