我周末的编程乐趣是用F#写一个300行的反转程序。可能需要更多的周末才能找到如何将字母表搜索并行化,这实际上超出了这个问题的范围。
我发现,虽然我无法想出一些实现alphabeta功能的“纯功能”方法。即没有任何可变状态。
有什么好主意吗?
我想到的唯一想法就是编写类似Seq.foldUntil()函数的东西,其中累加器状态用于存储状态的变化。并且可以通过传入的lambda函数取消。
也许看起来像这样:
let transformWhile<'t,'s,'r> (transformer : 's -> 't -> 's * 'r * bool ) (state : 's) (sequence : 't seq) : 'r seq
这里不纯的alphabeta函数......
let rec alphabeta depth alpha beta fork (position : ReversiPosition) (maximize : bool) : (SquareName option * int) =
match depth with
| 0 -> (None, snd (eval position))
| _ ->
let allMoves =
allSquares
|> Seq.map (fun sq -> (sq,tryMove (position.ToMove) sq position))
|> Seq.filter (fun pos -> match snd pos with | Some(_) -> true | None -> false )
|> Seq.map (fun opos -> match opos with | (sq,Some(p)) -> (sq,p) | _ -> failwith("only Some(position) expected here."))
|> Array.ofSeq
let len = allMoves.Length
match len with
| 0 -> (None, snd (eval position))
| _ ->
if maximize then
let mutable v = System.Int32.MinValue
let mutable v1 = 0
let mutable a = alpha
let b = beta
let mutable i = 0
let mutable bm : SquareName option = None
let mutable bm1 : SquareName option = None
while (i<len) && (b > a) do
let x,y = alphabeta (depth-1) a b false (snd allMoves.[i]) false
bm1 <- Some(fst allMoves.[i])
v1 <- y
if v1 > v then
bm <- bm1
v <- v1
a <- max a v
if b > a then
i <- (i + 1)
(bm,v)
else
let mutable v = System.Int32.MaxValue
let mutable v1 = 0
let a = alpha
let mutable b = beta
let mutable i = 0
let mutable bm : SquareName option = None
let mutable bm1 : SquareName option = None
while (i<len) && (b > a) do
let x,y = alphabeta (depth-1) a b false (snd allMoves.[i]) true
bm1 <- Some(fst allMoves.[i])
v1 <- y
if v1 < v then
bm <- bm1
v <- v1
b <- min b v
if b > a then
i <- (i + 1)
(bm,v)
在等待答案的同时,我决定尝试一下我的transformWhile想法,这就是它的结果:
module SeqExt =
let rec foldWhile<'T,'S,'R> (transformer : 'S -> 'T -> 'S * 'R * bool ) (state : 'S) (sequence : seq<'T>) : 'R option =
if (Seq.length sequence) > 0 then
let rest = (Seq.skip 1 sequence)
let newState, resultValue, goOn = transformer state (Seq.head sequence)
if goOn && not (Seq.isEmpty rest) then
foldWhile transformer newState rest
else
Some(resultValue)
else
None
一些交互式测试显示它适用于一些微不足道的东西,所以我决定写一个新版本的alphabeta,现在看起来像这样:
let rec alphabeta depth alpha beta fork (position : ReversiPosition) (maximize : bool) : (SquareName option * int) =
match depth with
| 0 -> (None, snd (eval position))
| _ ->
let allMoves =
allSquares
|> Seq.map (fun sq -> (sq,tryMove (position.ToMove) sq position))
|> Seq.filter (fun pos -> match snd pos with | Some(_) -> true | None -> false )
|> Seq.map (fun opos -> match opos with | (sq,Some(p)) -> (sq,p) | _ -> failwith("only Some(position) expected here."))
let len = Seq.length allMoves
match len with
| 0 -> (None, snd (eval position))
| _ ->
if maximize then
let result = SeqExt.foldWhile
( fun (state : int * int * SquareName option * int ) move ->
let curAlpha,curBeta,curMove,curValue = state
let x,y = alphabeta (depth-1) curAlpha curBeta false (snd move) false
let newBm,newScore =
if y > curValue then
(Some(fst move), y)
else
(curMove,curValue)
let newAlpha = max curAlpha newScore
let goOn = curBeta > newAlpha
((newAlpha,curBeta,newBm,newScore),(newBm,newScore),goOn)
) (alpha,beta,None,System.Int32.MinValue) allMoves
match result with
| Some(r) -> r
| None -> failwith("This is not possible! Input sequence was not empty!")
else
let result = SeqExt.foldWhile
( fun (state : int * int * SquareName option * int ) move ->
let curAlpha,curBeta,curMove,curValue = state
let x,y = alphabeta (depth-1) curAlpha curBeta false (snd move) true
let newBm,newScore =
if y < curValue then
(Some(fst move), y)
else
(curMove,curValue)
let newBeta = min curBeta newScore
let goOn = newBeta > curAlpha
((curAlpha,newBeta,newBm,newScore),(newBm,newScore),goOn)
) (alpha,beta,None,System.Int32.MaxValue) allMoves
match result with
| Some(r) -> r
| None -> failwith("This is not possible! Input sequence was not empty!")
这看起来像功能编程专业人员会做的事情吗?或者你会做什么?
虽然之前的强力搜索是尾递归(没有调用堆栈构建),但这个纯函数版本不再是尾递归。任何人都可以找到一种让它再次递归的方法吗?
答案 0 :(得分:1)
我既不熟悉算法,也不熟悉F#,所以我将pseudocode from Wikipedia翻译成纯函数变体:
function alphabeta(node, depth, α, β, maximizingPlayer)
if depth == 0 or node is a terminal node
return the heuristic value of node
if maximizingPlayer
return take_max(children(node), depth, α, β)
else
return take_min(children(node), depth, α, β)
function take_max(children, depth, α, β)
v = max(v, alphabeta(head(children), depth - 1, α, β, FALSE))
new_α = max(α, v)
if β ≤ new_α or tail(children) == Nil
return v
else
return take_max(tail(children), depth, α, β))
function take_min(children, depth, α, β)
v = min(v, alphabeta(head(children), depth - 1, α, β, TRUE))
new_β = min(β, v)
if new_β ≤ α or tail(children) == Nil
return v
else
return take_min(tail(children), depth, α, β))
诀窍是将带有foreach
的{{1}}转换为具有适当基本情况的递归。我假设break
返回节点的缺点列表,可以使用children(node)
/ head
对其进行解构并对tail
进行测试。
显然,我无法测试这个,但我认为它包含正确的想法(而且几乎是Python ......)。
此外,也许这是一个记忆的案例 - 但这取决于域(我不熟悉)。这种递归可能更难以并行化;为此,您可以并行构建Nil
和alphas / beta的列表(因为对v
的调用可能是最昂贵的部分),用alphabeta
替换递归在这些名单上。
答案 1 :(得分:0)
John Hughes, Why functional programming matters中描述了一种功能强大的方法。
此外,您还可以查看罗素和诺维格的实现,人工智能-一种现代方法