我正在尝试创建一个具有相等网格间距的绘图,我使用的第一个代码是:
import numpy as np
import matplotlib.pyplot as plt
time= np.linspace (0, 25, 5000)
temp_pri = 50 / np.sqrt (2 * np.pi * 3**2) * np.exp (-((time - 13)**2 / (3**2))**2) + 15
temp_sec = 50 * np.sin(2* np.pi * time/100)
figure_x_y = plt.figure(figsize=(10, 10))
figure_x_y.clf()
plot_x_vs_y = plt.subplot(111)
plot_x_vs_y.plot(time, temp_pri, linewidth=1.0)
plot_x_vs_y.set_ylabel(r'\textit{Temperature (K)}', labelpad=6)
plot_x_vs_y.set_xlabel(r'\textit{Time (ms)}', labelpad=6)
# plot_x_vs_y.set_aspect('equal')
ax2 = plot_x_vs_y.twinx()
ax2.plot(time, temp_sec, color='#4DAF4A')
# ax2.set_aspect('equal')
plt.show()
plt.close()
输出的结果是:
当我设置选项set_aspect('equal')选项时,代码:
import numpy as np
import matplotlib.pyplot as plt
time= np.linspace (0, 25, 5000)
temp_pri = 50 / np.sqrt (2 * np.pi * 3**2) * np.exp (-((time - 13)**2 / (3**2))**2) + 15
temp_sec = 50 * np.sin(2* np.pi * time/100)
figure_x_y = plt.figure(figsize=(10, 10))
figure_x_y.clf()
plot_x_vs_y = plt.subplot(111)
plot_x_vs_y.plot(time, temp_pri, linewidth=1.0)
plot_x_vs_y.set_ylabel(r'\textit{Temperature (K)}', labelpad=6)
plot_x_vs_y.set_xlabel(r'\textit{Time (ms)}', labelpad=6)
plot_x_vs_y.set_aspect('equal')
ax2 = plot_x_vs_y.twinx()
ax2.plot(time, temp_sec, color='#4DAF4A')
ax2.set_aspect('equal')
plt.show()
plt.close()
我得到的输出是:
如何让两个(主要和辅助y轴)网格间距相同?
答案 0 :(得分:4)
如果通过"相同的间距"你的意思是两个y轴上的数字是对齐的,那么你可以使用.ylim()
来设置两个轴上的最小/最大刻度:
#plot_x_vs_y.set_ylim(10,25) # This one is optional, manually set min/max for primary axis.
lims = plot_x_vs_y.get_ylim() # Get min/max of primary y-axis
ax2.set_ylim(lims) # Set min/max of secondary y-axis
ax2.grid('off') # You can turn the grid of secondary y-axis off
plt.show()
这给出了:
<强>更新强>
为了更灵活,这里是一个帮助函数,您可以在调用plt.show()
之前调用它:
def align_axis(ax1, ax2, step=1):
""" Sets both axes to have the same number of gridlines
ax1: left axis
ax2: right axis
step: defaults to 1 and is used in generating a range of values to check new boundary
as in np.arange([start,] stop[, step])
"""
ax1.set_aspect('auto')
ax2.set_aspect('auto')
grid_l = len(ax1.get_ygridlines()) # N of gridlines for left axis
grid_r = len(ax2.get_ygridlines()) # N of gridlines for right axis
grid_m = max(grid_l, grid_r) # Target N of gridlines
# Choose the axis with smaller N of gridlines
if grid_l < grid_r:
y_min, y_max = ax1.get_ybound() # Get current boundaries
parts = (y_max - y_min) / (grid_l - 1) # Get current number of partitions
left = True
elif grid_l > grid_r:
y_min, y_max = ax2.get_ybound()
parts = (y_max - y_min) / (grid_r - 1)
left = False
else:
return None
# Calculate the new boundary for axis:
yrange = np.arange(y_max + 1, y_max * 2 + 1, step) # Make a range of potential y boundaries
parts_new = (yrange - y_min) / parts # Calculate how many partitions new boundary has
y_new = yrange[np.isclose(parts_new, grid_m - 1)] # Find the boundary matching target
# Set new boundary
if left:
return ax1.set_ylim(top=round(y_new, 0), emit=True, auto=True)
else:
return ax2.set_ylim(top=round(y_new, 0), emit=True, auto=True)
所以在你的例子中调用它:
align_axis(plot_x_vs_y, ax2)
plt.show()
产生
这可能比情节的裁剪版本更公平。
请注意,我没有对它进行过广泛的测试,如果此函数无法找到正确的对齐值,可能会出现极端情况。