我有两个连续变量的数据集:duration
和waiting
。
library("MASS")
data(geyser)
geyser1 <- geyser[1:150,]
geyser2 <- geyser[151:299,]
geyser2$duration <- geyser2$duration - 1
geyser2$waiting <- geyser2$waiting - 20
对于每个数据集,我输出2D密度图
ggplot(geyser1, aes(x = duration, y = waiting)) +
xlim(0.5, 6) + ylim(40, 110) +
stat_density2d(aes(alpha=..level..),
geom="polygon", bins = 10)
ggplot(geyser2, aes(x = duration, y = waiting)) +
xlim(0.5, 6) + ylim(40, 110) +
stat_density2d(aes(alpha=..level..),
geom="polygon", bins = 10)
我现在想要制作一个图表,指出两个图表具有相同密度(白色)的区域,负差异(从白色到蓝色的渐变,其中geyser2
比geyser1
更密集)和正差异(从白色到红色的渐变,其中geyser1
比geyser2
更密集)。
如何计算和绘制密度的差异?
答案 0 :(得分:4)
您可以先使用kde2d
计算密度,然后相互减去密度。然后你做一些数据整形,把它变成一个可以输入ggplot2
的形式。
library(reshape2) # For melt function
# Calculate the common x and y range for geyser1 and geyser2
xrng = range(c(geyser1$duration, geyser2$duration))
yrng = range(c(geyser1$waiting, geyser2$waiting))
# Calculate the 2d density estimate over the common range
d1 = kde2d(geyser1$duration, geyser1$waiting, lims=c(xrng, yrng), n=200)
d2 = kde2d(geyser2$duration, geyser2$waiting, lims=c(xrng, yrng), n=200)
# Confirm that the grid points for each density estimate are identical
identical(d1$x, d2$x) # TRUE
identical(d1$y, d2$y) # TRUE
# Calculate the difference between the 2d density estimates
diff12 = d1
diff12$z = d2$z - d1$z
## Melt data into long format
# First, add row and column names (x and y grid values) to the z-value matrix
rownames(diff12$z) = diff12$x
colnames(diff12$z) = diff12$y
# Now melt it to long format
diff12.m = melt(diff12$z, id.var=rownames(diff12))
names(diff12.m) = c("Duration","Waiting","z")
# Plot difference between geyser2 and geyser1 density
ggplot(diff12.m, aes(Duration, Waiting, z=z, fill=z)) +
geom_tile() +
stat_contour(aes(colour=..level..), binwidth=0.001) +
scale_fill_gradient2(low="red",mid="white", high="blue", midpoint=0) +
scale_colour_gradient2(low=muted("red"), mid="white", high=muted("blue"), midpoint=0) +
coord_cartesian(xlim=xrng, ylim=yrng) +
guides(colour=FALSE)