我正在尝试编写一个Knights Tour算法,它有两个数组,ACCESS和board。 ACCESS是我用来确定下一步行动的数组,而board是用户将看作最终结果的数组。我的算法检查找到具有最小可用移动数量的方块然后去那里。如果碰巧有两个可能的移动且具有相同数量的可用移动,我会发现哪一个距离中心最远(最靠近边界)并移动到那个位置。这个算法应该一直给出一个完美的64步骑士巡回赛程序,但我通常只得到大约60个动作,谁能告诉我为什么它不给64?
import java.util.*;
import java.io.*;
import java.text.DecimalFormat;
class KnightsTour
{
public static void main(String args[]) throws IOException
{
boolean hasnextmove = true;
Knight knight = new Knight();
knight.getStart();
do
{
knight.move();
knight.newposition();
hasnextmove = knight.hasnextmove();
}while(hasnextmove == true);
knight.displayBoard();
}
}
class Knight
{
DecimalFormat twoDigits = new DecimalFormat("00");
private int board[][];
private int startRow, startCol, rowPos, colPos, smallest;
private int k = 2;
private boolean move = true;
final private int ACCESS[][] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 2, 3, 4, 4, 4, 4, 3, 2, 0, 0},
{0, 0, 3, 4, 6, 6, 6, 6, 4, 3, 0, 0},
{0, 0, 4, 6, 8, 8, 8, 8, 6, 4, 0, 0},
{0, 0, 4, 6, 8, 8, 8, 8, 6, 4, 0, 0},
{0, 0, 4, 6, 8, 8, 8, 8, 6, 4, 0, 0},
{0, 0, 4, 6, 8, 8, 8, 8, 6, 4, 0, 0},
{0, 0, 3, 4, 6, 6, 6, 6, 4, 3, 0, 0},
{0, 0, 2, 3, 4, 4, 4, 4, 3, 2, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
// constructor, initializes values and the board
public Knight()
{
board = new int[8][8];
for(int i = 0; i < 8; i++)
for(int k = 0; k < 8; k++)
board[i][k] = 0;
startRow = 0;
startCol = 0;
rowPos = 0;
colPos = 0;
}
// tests to see if there is another move available
public boolean hasnextmove()
{
if(ACCESS[rowPos + 1][colPos + 2] != 0 || ACCESS[rowPos + 1][colPos - 2] != 0 || ACCESS[rowPos - 1][colPos + 2] != 0 || ACCESS[rowPos - 1][colPos - 2] != 0 || ACCESS[rowPos - 2][colPos + 1] != 0 || ACCESS[rowPos - 2][colPos - 1] != 0 || ACCESS[rowPos + 2][colPos - 1] != 0 || ACCESS[rowPos + 2][colPos + 1] != 0)
return true;
else
return false;
}
// gets user input for starting square of the knight
public void getStart() throws IOException
{
Scanner input = new Scanner(System.in);
System.out.println("Please input the starting row number of the knight: ");
startRow = input.nextInt() + 1;
System.out.println("Please input the starting column number of the knight: ");
startCol = input.nextInt() + 1;
rowPos = startRow;
colPos = startCol;
board[startRow - 2][startCol - 2] = 1;
ACCESS[startRow][startCol] = 0;
}
// displays the board
public void displayBoard()
{
System.out.println("This is the game board");
for(int i = 0; i < 8; i++)
{
for(int k = 0; k < 8; k++)
{
System.out.print(twoDigits.format(board[i][k]) + " ");
}
System.out.println();
}
}
// sees if there is a possible move and if so, what is the smallest number space that the knight can move
public void move()
{
smallest = 50;
if(ACCESS[rowPos + 1][colPos + 2] != 0 || ACCESS[rowPos + 1][colPos - 2] != 0 || ACCESS[rowPos - 1][colPos + 2] != 0 || ACCESS[rowPos - 1][colPos - 2] != 0 || ACCESS[rowPos - 2][colPos + 1] != 0 || ACCESS[rowPos - 2][colPos - 1] != 0 || ACCESS[rowPos + 2][colPos - 1] != 0 || ACCESS[rowPos + 2][colPos + 1] != 0)
move = true;
else
move = false;
if(move == true)
{
if(ACCESS[rowPos + 1][colPos + 2] < smallest && ACCESS[rowPos + 1][colPos + 2] != 0)
smallest = ACCESS[rowPos + 1][colPos + 2];
if(ACCESS[rowPos + 1][colPos - 2] < smallest && ACCESS[rowPos + 1][colPos - 2] != 0)
smallest = ACCESS[rowPos + 1][colPos - 2];
if(ACCESS[rowPos - 1][colPos + 2] < smallest && ACCESS[rowPos - 1][colPos + 2] != 0)
smallest = ACCESS[rowPos - 1][colPos + 2];
if(ACCESS[rowPos - 1][colPos - 2] < smallest && ACCESS[rowPos - 1][colPos - 2] != 0)
smallest = ACCESS[rowPos - 1][colPos - 2];
if(ACCESS[rowPos + 2][colPos + 1] < smallest && ACCESS[rowPos + 2][colPos + 1] != 0)
smallest = ACCESS[rowPos + 2][colPos + 1];
if(ACCESS[rowPos + 2][colPos - 1] < smallest && ACCESS[rowPos + 2][colPos - 1] != 0)
smallest = ACCESS[rowPos + 2][colPos - 1];
if(ACCESS[rowPos - 2][colPos + 1] < smallest && ACCESS[rowPos - 2][colPos + 1] != 0)
smallest = ACCESS[rowPos - 2][colPos + 1];
if(ACCESS[rowPos - 2][colPos - 1] < smallest && ACCESS[rowPos - 2][colPos - 1] != 0)
smallest = ACCESS[rowPos - 2][colPos - 1];
}
}
// moves the knight to the smallest numbered square it can
public void newposition()
{
int temprow = rowPos;
int tempcol = colPos;
int possiblemoves = 0;
boolean moved = false;
boolean specialcasemoved = false;
// moves pieces to new spot
if(ACCESS[rowPos - 2][colPos + 1] == smallest && moved == false)
{
temprow = rowPos - 2;
tempcol = colPos + 1;
possiblemoves++;
}
if(ACCESS[rowPos - 1][colPos + 2] == smallest && moved == false)
{
temprow = rowPos - 1;
tempcol = colPos + 2;
possiblemoves++;
}
if(ACCESS[rowPos + 1][colPos + 2] == smallest && moved == false)
{
temprow = rowPos + 1;
tempcol = colPos + 2;
possiblemoves++;
}
if(ACCESS[rowPos + 2][colPos + 1] == smallest && moved == false)
{
temprow = rowPos + 2;
tempcol = colPos + 1;
possiblemoves++;
}
if(ACCESS[rowPos + 2][colPos - 1] == smallest && moved == false)
{
temprow = rowPos + 2;
tempcol = colPos - 1;
possiblemoves++;
}
if(ACCESS[rowPos + 1][colPos - 2] == smallest && moved == false)
{
temprow = rowPos + 1;
tempcol = colPos - 2;
possiblemoves++;
}
if(ACCESS[rowPos - 1][colPos - 2] == smallest && moved == false)
{
temprow = rowPos - 1;
tempcol = colPos - 2;
possiblemoves++;
}
if(ACCESS[rowPos - 2][colPos - 1] == smallest && moved == false)
{
temprow = rowPos - 2;
tempcol = colPos - 1;
possiblemoves++;
}
if(possiblemoves > 1)
{
double distance = 0;
double tempdistance;
if(ACCESS[rowPos - 2][colPos + 1] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos - 2 - 1)), 2) + Math.pow((6.5 - (colPos + 1 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos - 2;
tempcol = colPos + 1;
}
}
if(ACCESS[rowPos - 1][colPos + 2] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos - 1 - 1)), 2) + Math.pow((6.5 - (colPos + 2 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos - 1;
tempcol = colPos + 2;
}
}
if(ACCESS[rowPos + 1][colPos + 2] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos + 1 - 1)), 2) + Math.pow((6.5 - (colPos + 2 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos + 1;
tempcol = colPos + 2;
}
}
if(ACCESS[rowPos +2][colPos + 1] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos + 2 - 1)), 2) + Math.pow((6.5 - (colPos + 1 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos + 2;
tempcol = colPos + 1;
}
}
if(ACCESS[rowPos + 2][colPos - 1] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos + 2 - 1)), 2) + Math.pow((6.5 - (colPos - 1 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos + 2;
tempcol = colPos - 1;
}
}
if(ACCESS[rowPos + 1][colPos - 2] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos + 1 - 1)), 2) + Math.pow((6.5 - (colPos - 2 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos + 1;
tempcol = colPos - 2;
}
}
if(ACCESS[rowPos - 1][colPos - 2] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos - 1 - 1)), 2) + Math.pow((6.5 - (colPos - 2 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos - 1;
tempcol = colPos - 2;
}
}
if(ACCESS[rowPos - 2][colPos - 1] == smallest)
{
tempdistance = Math.sqrt(Math.pow((6.5 - (rowPos - 2 - 1)), 2) + Math.pow((6.5 - (colPos - 1 - 1)), 2));
if(tempdistance > distance)
{
distance = tempdistance;
temprow = rowPos - 2;
tempcol = colPos - 1;
}
}
/* boolean m1, m2, m3, m4, m5, m6, m7, m8;
m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = false;
int randomnumber;
if(ACCESS[rowPos - 2][colPos + 1] == smallest)
{
m1 = true;
}
if(ACCESS[rowPos - 1][colPos + 2] == smallest)
{
m2 = true;
}
if(ACCESS[rowPos + 1][colPos + 2] == smallest)
{
m3 = true;
}
if(ACCESS[rowPos + 2][colPos + 1] == smallest)
{
m4 = true;
}
if(ACCESS[rowPos + 2][colPos - 1] == smallest)
{
m5 = true;
}
if(ACCESS[rowPos + 1][colPos - 2] == smallest)
{
m6 = true;
}
if(ACCESS[rowPos - 1][colPos - 2] == smallest)
{
m7 = true;
}
if(ACCESS[rowPos - 2][colPos - 1] == smallest)
{
m8 = true;
}
do
{
Random rand = new Random();
int randomNum = (int) (rand.nextInt(6)+1) + 1;
switch(randomNum)
{
case 1:
if(m1 == true)
{
temprow = rowPos - 2;
tempcol = colPos + 1;
specialcasemoved = true;
}
case 2:
if(m2 == true)
{
temprow = rowPos - 1;
tempcol = colPos + 2;
specialcasemoved = true;
}
case 3:
if(m3 == true)
{
temprow = rowPos + 1;
tempcol = colPos + 2;
specialcasemoved = true;
}
case 4:
if(m4 == true)
{
temprow = rowPos + 2;
tempcol = colPos + 1;
specialcasemoved = true;
}
case 5:
if(m5 == true)
{
temprow = rowPos + 2;
tempcol = colPos - 1;
specialcasemoved = true;
}
case 6:
if(m6 == true)
{
temprow = rowPos + 1;
tempcol = colPos - 2;
specialcasemoved = true;
}
case 7:
if(m7 == true)
{
temprow = rowPos - 1;
tempcol = colPos - 2;
specialcasemoved = true;
}
case 8:
if(m8 == true)
{
temprow = rowPos - 2;
tempcol = colPos - 1;
specialcasemoved = true;
}
}
}while(specialcasemoved == false);*/
}
rowPos = temprow;
colPos = tempcol;
System.out.println(possiblemoves);
possiblemoves = 0;
ACCESS[rowPos][colPos] = 0;
board[rowPos - 2][colPos - 2] = k;
k++;
// System.out.println(rowPos + " " + colPos);
}
}
答案 0 :(得分:1)
没有Knight's Tour解决方案,有60个动作。国际象棋棋盘上有64个方格,因此骑士之旅必须有64个移动(如果不是闭环解决方案,则可能是63个)。如果您获得了60次移动的解决方案,那么您的算法就会被破坏。
如果我从字面上解释你的描述,你有可能误解了Warnsdorff的规则。 “规则”旨在解决由于可能性的数量而导致详尽的骑士巡回算法效率低下的问题。它表明,当使用详尽的,深度优先的,回溯搜索算法时,总是首先探索本身具有最少选项的选项。这仍然需要回溯,因为即使使用该规则有时也会导致需要退出的死胡同。
我意识到这可能没有解决你的问题,但你发布了很多代码,这使得理解可能出现的问题变得复杂。我相信通过更好的封装可以大大简化它。我很乐意发表一些建议,如果有帮助的话 - 只需发表评论。